1 ER Diagrams

We want to store sports teams and their players in our database. Draw an ER diagram corresponding to data given below:

- Every Team in our database will have a unique team_name and a stadium where they play their games.
- Each Coach has a name.
- Each Player will have a player_id, name and their average score.
- Our database will contain who Plays_For which team and also the “position” that the player plays in. We also need to store who Captains a team, and who Coaches a team.
- Every Team needs players, and needs exactly one captain.
- Each Player can be on at most one team, but may currently be a free agent and not on any team.
- Each team needs coaches and may have many.
- A Coach is uniquely identified by which team they coach.
2 Functional Dependencies

1. When there’s a lot of symbols floating around, it’s best to keep track of the "type" of the various symbols and expressions. Consider a set of functional dependencies \(F = \{ X \rightarrow Y, Y \rightarrow Z \} \). For each of the following symbols or expressions, indicate whether it is (a) an attribute, (b) a set of attributes, (c) a set of sets of attributes, (d) a functional dependency, (e) a set of functional dependencies, or (f) none of the above.

 (a) \(X \) (b) a set of attributes
 (b) \(XY \) (b) a set of attributes
 (c) \(X \rightarrow Y \) (d) a functional dependency
 (d) \(F \) (e) a set of functional dependencies
 (e) \(F+ \) (e) a set of functional dependencies
 (f) \(X+ \) (b) a set of attributes
 (g) Armstrong’s reflexivity axiom (f) an axiom

2. Consider a relation \(R(x, y, z) \) and the list of functional dependencies \(X \rightarrow Y, XY \rightarrow YZ, \) and \(Y \rightarrow X \) where \(X = \{ x \}, Y = \{ y \}, \) and \(Z = \{ z \}. \) For each of the following relations, indicate which functional dependencies it might satisfy.

 1. None
 2. \(XY \rightarrow YZ \)
 3. \(X \rightarrow Y, XY \rightarrow YZ \)
 4. \(X \rightarrow Y, XY \rightarrow YZ, Y \rightarrow X \)

3. Consider the set \(F = \{ A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C \} \) of functional dependencies. Compute the following attribute closures.

 (a) \(A+ \) \(ABCD \)
 (b) \(B+, C+, D+ \) \(B, C, D; \) \(B, C, \) and \(D \) do not appear alone on the left of any functional dependency, so nothing is in their attribute closures besides themselves.
 (c) \(AB+, AC+, AD+ \) \(ABCD; \) \(A+ = ABCD, \) so \(AX = ABCD \) for any \(X. \)
(d) BC+ BCD
(e) BD+ BD
(f) CD+ CD
(g) BCD+ BCD

4. Consider again the set F of functional dependencies from Question 3. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

(a) A candidate key
(b) B, C, D neither
(c) AB, AC, AD superkey
(d) BC neither
(e) BD neither
(f) CD neither
(g) BCD neither

3 Normal Forms

1. Decompose R = ABCDEFG into BCNF, given the functional dependency set: F = AB → CD, C → EF, G → A, G → F, CE → F.

 AB→CD => decompose ABCDEFG into ABCD, ABEFG
 G→A => decompose ABEFG into AG, BEFG
 G→F => decompose BEFG into FG, BEG
 Final relations: ABCD, AG, FG, BEG.

2. Does the above decomposition preserve dependencies? Why/why not?

 No, C → EF and CE → F are not represented in the closure of the union of each subrelation’s dependencies.