CS 186
Spring 2022 [terators and Joins

1 Introduction

Let’s begin with the simplest question: what, exactly, is a join? If you remember the SQL project,
you’ll remember writing things like R INNER JOIN S ON R.name = S.name and other similar state-
ments.

What that actually meant is that you take two relations, R and S, and create one new relation
out of their matches on the join condition — that is, for each record r; in R, find all records s; in
S that match the join condition we have specified and write < r;,s; > as a new row in the output
(all the fields of r followed by all the fields of s). The SQL lecture slides are a great resource for
more clarifications on what joins actually are.!

Before we get into the different join algorithms, we need to discuss what happens when the new
joined relation consisting of < r;,s; > is formed. Whenever we compute the cost of a join, we will
ignore the cost of writing the joined relation to disk. This is because we are assuming that the
output of the join will be consumed by another operator involved later on in the execution of the
SQL query. Often times this operator can directly consume the joined records from memory. Don’t
worry if this sounds confusing right now; we will revisit it in the Query Optimization module, but
the important thing to remember for now is that the final write cost is not included in our join cost
models!

!notation aside: [T] is the number of pages in table T, pr is the number of records on each page of T, and |T|
is the total number of records in table T. In other words, |T| = [T] X pr. This is really essential to understand the
following explanations.

CS 186, Spring 2022, Course Notes 1 Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

2 Simple Nested Loop Join

Let’s start with the simplest strategy possible. Let’s say we have a buffer of B pages, and we wish
to join two tables, R and S, on the join condition #. Starting with the most naive strategy, we can
take each record in R, search for all its matches in S, and then we yield each match.

This is called simple nested loop join (SNLJ). You can think of it as two nested for loops:

for each record r; in R:
for each record s; in S:
if 6 (’l“i,Sj)Z
yield <r;, s;>

Simple Nested Loop Join
:\ First iteration of outer loop...

Compare with all tuplesin S
...and add matches to result

This would be a great thing to do, but the theme of the class is really centered around optimization
and minimizing I/Os. For that, this is a pretty poor scheme, because we take each record in R and
read in every single page in S searching for a match. The I/O cost of this would then be [R]+|R|[5],
where [R] is the number of pages in R and |R| is the number of records in R. And while we might
be able to optimize things a slight amount by switching the order of R and S in the for loop, this
really isn’t a very good strategy.

Note: SNLJ does not incur |R| I/Os to read every record in R. It will cost [R] I/Os because

it’s really doing something more like “for each page p, in R: for each record r in p,: for each page
ps in 8: for each record s in ps: join” since we can’t read less than a page at a time.

CS 186, Spring 2022, Course Notes 2 Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

3 Page Nested Loop Join

It’s clear that we don’t want to read in every single page of S for each record of R, so what can we
do better? What if we read in every single page in S for every single page of R instead? That is,
for a page of R, take all the records and match them against each record in S, and do this for every
page of R.

That’s called page nested loop join (PNLJ). Here’s the pseudocode for it:

for each page p, in R:
for each page p; in S:
for each record r; in p,:
for each record s; in ps:
if 0(r;, Sj)t
yield <r;, s;>

Page-Oriented Nested Loop Join

First iteration of outer loop...

Compare with all tuplesin S
...and add matches to result

py)

wn
&
€

The I/O cost of this is somewhat better. It’s [R] + [R][S] — this can be optimized by keeping the
smaller relation between R and S as the outer one (keep this in mind when asked to find the lowest
cost for performing the join).

CS 186, Spring 2022, Course Notes 3 Jenny Huang, Lakshya Jain

CS 186

Spring 2022 [terators and Joins

4 Block Nested Loop Join

Page Nested Loop Join is a lot better! The only problem is that we’re still not fully utilizing our
buffer as powerfully as we can. We have B buffer pages, but our algorithm only uses 3 — one for R,
one for S, and one for the output buffer. Remember that the fewer times we read in S, the better
— so if we can reserve B-2 pages for R instead and match S against every record in each ”chunk”,
we could cut down our I/O cost drastically!

This is called Chunk Nested Loop Join (or Block Nested Loop Join). The key idea here is
that we want to utilize our buffer to help us reduce the I/O cost, and so we can reserve as many
pages as possible for a chunk of R — because we only read in each page of S once per chunk, larger
chunks imply fewer I/Os. For each chunk of R, match all the records in S against all the records in
the chunk.

for each block of B—2 pages B, in R:
for each page p; in S:
for each record r; in B,:
for each record s; in ps:
if 6(r;,s;):
yield <r;, s;>

Block Nested Loop Join

First iteration of outer loop...

/' B pages in memory!
Use B — 2 for R

Compare with all tuplesin S
...and add matches to result

Then, the I/O cost of this can be written as [R] + [%1 [S].

This is a lot better! Now, we're taking advantage of our B buffer pages to reduce the number

of times we have to read in S. See Project 3 Part 1 Task 1 for a dynamic visualization of BNLJ in
action!

CS 186, Spring 2022, Course Notes 4 Jenny Huang, Lakshya Jain

CS 186

Spring 2022 [terators and Joins

5 Index Nested Loop Join

There are times, however, when Block Nested Loop Join isn’t the best thing to do. Sometimes, if
we have an index on S that is on the appropriate field (i.e. the field we are joining on), it can be
very fast to look up matches of r; in S. This is called index nested loop join, and the pseudocode
goes like this:

for each record r; in R:
for each record s; in S where Q(Ti,sj)==true:
yield <r;, s;>

The I/O cost is [R] + |R|*(cost to look up matching records in 8).
The cost to look up matching records in S will differ based on the type of index. If it is a B+

tree, we will search starting at the root and count how many I/Os it will take to get to a corre-
sponding record. See the Clustering and Counting I1/0’s sections of the B+ tree course notes.

CS 186, Spring 2022, Course Notes) Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

60 Hash Join

Notice that in this entire sequence, we'’re really trying to look for matching records. Hash tables
are really nice for looking up matches, though; even if we don’t have an index, we can construct
a hash table that is B-2 pages? big on the records of R, fit it into memory, and then read in each
record of S and look it up in R’s hash table to see if we can find any matches on it. This is called
Naive Hash Join. Its cost is [R] + [S] I/Os.

That’s actually the best one we’ve done yet. It’s efficient, cheap, and simple. There’s a prob-
lem with this, however; this relies on R being able to fit entirely into memory (specifically, having
R being < B — 2 pages big). And that’s often just not going to be possible.

To fix this, we repeatedly hash R and S into B-1 buffers so that we can get partitions that are
< B — 2 pages big, enabling us to fit them into memory and perform a Naive Hash Join. More
specifically, consider each pair of corresponding partitions R; and S; (i.e. partition i of R and parti-
tion i of 8). If R; and S; are both > B-2 pages big, hash both partitions into smaller ones. Else, if
either R; or S; < B-2 pages, stop partitioning and load the smaller partition into memory to build
an in-memory hash table and perform a Naive Hash Join with the larger partition in the pair.

This procedure is called Grace Hash Join, and the I/O cost of this is: the cost of hashing
plus the cost of Naive Hash Join on the subsections. The cost of hashing can change based on how
many times we need to repeatedly hash on how many partitions. The cost of hashing a partition P
includes the I/O’s we need to read all the pages in P and the I/O’s we need to write all the resulting
partitions after hashing partition P.

The Naive Hash Join portion cost per partition pair is the cost of reading in each page in both
partitions after you have finished.

Grace Hash is great, but it’s really sensitive to key skew, so you want to be careful when us-
ing this algorithm. Key skew is when we try to hash but many of the keys go into the same bucket.
Key skew happens when many of the records have the same key. For example, if we’re hashing on
the column which only has ”yes” as values, then we can keep hashing but they will all end up in
the same bucket no matter which hash function we use.

2We need one page for the current page in S and one page to store output records. The other B-2 pages can be
used for the hash table.

CS 186, Spring 2022, Course Notes 6 Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

7 Sort-Merge Join

There’s also times when it helps for us to sort R and S first, especially if we want our joined table
to be sorted on some specific column. In those cases, what we do is first sort R and S. Then:

(1) we begin at the start of R and S and advance one or the other until we get to a match (if
r; < sj, advance R; else if r; > s;, advance S — the idea is to advance the lesser of the two
until we get to a match).

(2) Now, let’s assume we’ve gotten to a match. Let’s say this pair is 7, s;. We mark this spot
in 8 as marked(S) and check each subsequent record in S (sj,5j41,5j42, etc) until we find
something that is not a match (i.e. read in all records in S that match to r;).

(3) Now, go to the next record in R and go back to the marked spot in S and begin again at step
1 (except instead of beginning at the start of R and the start of S, do it at the indices we just
indicated) — the idea is that because R and S are sorted, any match for any future record of
R cannot be before the marked spot in S, because this record r;11 > r; — if a match for r; did
not exist before marked(S), a match for r;; cannot possibly be before marked(S) either!
So we scroll from the marked spot in S until we find a match for r;4;.

This is called Sort-Merge Join and the average 1/O cost is: cost to sort R + cost to sort S +
([R] 4+ [S]) (though it is important to note that this is not the worst case!). In the worst case, if
each record of R matches every record of S, the last term becomes |R| * [S]. The worst case cost is
then: cost to sort R + cost to sort S + ([R] + |R| = [S]). That generally doesn’t happen, though).

CS 186, Spring 2022, Course Notes 7 Jenny Huang, Lakshya Jain

CS 186

Spring 2022 [terators and Joins

Let’s take a look at an example. Let the table on the left be R and the table on the right be S.

[sid__|sname ___ BENNECHNNCY
22

dustin) 28 103 &=
28 yuppy 28 104
=) 31 lubber 31 101
31 lubber2 31 102
44 guppy 42 142
57 rusty 58 107
sid sname bid
28 yuppy 103
28 yuppy 104

We will advance the pointer (the red arrow) on S because 28 < 31 until S gets to sid of 31.
Then we will mark this record (the black arrow). In addition, we will output this match.

ERNETSE s b
22

dustin 28 103
28 yuppy 28 104
—31 lubber - 31 101
31 lubber2 31 102
44 guppy 42 142
57 rusty 58 107

sid sname bid

28 yuppy 103

28 yuppy 104

31 lubber 101

Then we will advance the pointer on S again and we get another match and output it.

22 dustin
28 yuppy
—>31 lubber
31 lubber:
44 guppy
57 rusty
sid
28
28
31
31

CS 186, Spring 2022, Course Notes

2

sname
yuppy
yuppy
lubber
lubber

bid

103
104
101
102

bid

103
104
101
102
142
107

Jenny Huang, Lakshya Jain

CS 186

Spring 2022 [terators and Joins

We advance the pointer on S again, but we do not get a match. We then reset S to where we
marked (the black arrow) and then advance R. When we advance R, we get another match so we
output it.

ENNETSEE sd i
22

[sid | sname | sid bid dustin 28 103
22 dustin 28 103 28 yuppy 28 104
28 yuppy 28 104 31 lubber == 31 101 e

=31 lubber 31 101 = 31 lubber2 31 102
31 lubber2 31 102 44 guppy 42 142
44 guppy = 42 142 57 rusty 58 107
57 rusty 58 107
sid shame bid
sid sname bid 28 yuppy 103
28 yuppy 103 28 yuppy 104
28 yuppy 104 31 lubber 101
31 lubber 101 31 lubber 102
31 lubber 102 31 lubber2 101

We then advance S, we get another match so we output it.

ENNETSEN s0 i

22 dustin 28 103
28 yuppy 28 104
31 lubber 31 101 e
- 31 lubber2 = 31 102

44 guppy 42 142
57 rusty 58 107

sid sname bid

28 yuppy 103

28 yuppy 104

31 lubber 101

31 lubber 102

31 lubber2 101
31 lubber2 102

CS 186, Spring 2022, Course Notes 9 Jenny Huang, Lakshya Jain

CS

186

Spring 2022 [terators and Joins

do {

-

7.1

if (!mark) {
while (r < s) { advance r }
while (r > s) { advance s }
// mark start of \block" of S
mark = s
}
if (r == s8) {
result = <r, s>
advance s
yield result
}
else {
reset s to mark
advance r
mark = NULL

An Important Refinement

An important refinement: You can combine the last sorting phase with the merging phase, provided
you have enough room in memory to allocate a page for each run of [R] and for each run of [S].

The

final merge pass is where you allocate a page for each run of R and each run of 8. In this

process, you save 2 x ([R] + [S]) 1/Os

To perform the optimization, we must

(1)

sort [R] and [S] (individually, using the full buffer pool for each of them) until you have
them both ”almost-sorted”; that is, for each table T in {R, S}, keep merging runs of T until
you get to the penultimate step, where one more sorting pass would result in a sorted table
T.

See how many runs of [R] and how many runs of [S] are left; sum them up. Allocate one
page in memory for each run. If you have enough input buffers left to accommodate this (i.e.
if runs(R) + runs(S) < B — 1), then you may use the optimization and you could then save

2% ([R] +[9]) I/Os.

If you could not do the optimization described in the previous step, it means that runs(R)
+ runs(S) > B. In the ideal case, the optimization allows us to avoid doing an extra read of
both R and S, but this is not possible here, as we don’t have an available buffer for each run
of R and S.

CS 186, Spring 2022, Course Notes 10 Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

However, we’re not out of options yet! If we can’t avoid extra reads for both R and S, perhaps
we can avoid an extra read for at least one of them. Let’s assume that the outer relation R
is the larger relation in this join. Because we are trying to minimize I/Os, we would like to
avoid the extra read for the larger table R. Could it help us to maybe completely sort just
the smaller table S and use that in an optimization?

It turns out that we can! If we completely sort S, there is, by definition, now only one
sorted run for that table, and this would mean that we only need to allocate one page in
our buffer for it. So, if runs(R) + 1 < B — 1, then we can allocate one buffer page for §
and for each run of R. Then, we can perform the SMJ optimization. Here, we have avoided
the final sorting pass for R by combining it with the join phase. So we have saved 2x[R] pages.

Sometimes, though, even this is not enough — if runs(R) = B-1, then we don’t have a spare
buffer page for S. In this case, we'd like to still reduce as many I/Os as possible, so maybe
perform the procedure described in the previous paragraph, but for the smaller table. That
is, if runs(S) + 1 < B — 1, then sort R, reducing the number of sorted runs for it to 1 by
definition, and then allocate one buffer page for R and one for each run of S. Then, perform
the optimization — this will enable us to avoid the final sorting pass for S by combining it
with the join phase, saving us 2 [S] I/Os.

When determining the cost of SMJ, any optimizations that can be applied should be used.
If none of those conditions are met, though, we just won’t be able to optimize sort-merge
join. And that’s alright. Sometimes, we just have to bite the bullet and accept that we can’t
always cut corners.

CS 186, Spring 2022, Course Notes 11 Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

8 Practice Questions

1. Sanity check - determine whether each of the following statements is true or false.
a. Block Nested Loops join will always perform at least as well as Page Nested Loops Join
when it comes to minimizing I/Os.
b. Grace hash join is usually the best algorithm for joins in which the join condition includes

an inequality (i.e. coll < col2).

2. We have a table R with 100 pages and S with 50 pages and a buffer of size 12. What is the
cost of a page nested loop join of R and S?

3. Given the same tables, R and S, from the previous question, we now also have an index on
table R on the column a. If we are joining R.b == S.b, can we use index nested loop join?

4. Given the same tables, R and S, we want to join R and S on R.b == S.b. What is the cost
of an index nested loop join of R and S?

Assume the following for this problem only:

e pr =10 and pg = 30

e For every tuple in R, there are 5 tuples in S that satisfy the join condition and for every
tuple in S, there are 20 tuples in R that satisfy the join condition.

e There is an Alt. 3 clustered index on R.b of height 3.
e There is an Alt. 3 unclustered index on S.b of height 2.
e There are only 3 buffer pages available.

5. Then we realize that R is already sorted on column b so we decide to attempt a sort merge
join. What is the cost of the sort merge join of R and S?

6. Lastly, we try Grace Hash Join on the two tables. Assume that the hash uniformly distributes
the data for both tables. What is the cost of Grace Hash Join of R and S?

CS 186, Spring 2022, Course Notes 12 Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

9 Solutions

1. True, False

a. True - Block Nested Loops Join turns into PNLJ when B=3. Otherwise the cost model
is strictly less: [R] + [R] % [S] vs [R] + [R/(B — 2)] % [5]

b. False - A hash join requires an Equijoin which cannot happen when an inequality is
involved.

2. It does not matter the size of the buffer because we are doing a page nested loop join which
only requires 3 buffer pages (one for R, one for S, and one for output). We will consider both

join orders:
[R] + [R][S] = 100 + 100 % 50 = 5100

[S] + [S][R] = 50 + 50 % 100 = 5050
The second join order is optimal and the number of 1/O’s is 5050.

3. The answer is no, we cannot use index nested loop join because the index is on the column a
which is not going to help us since we are joining on B.

4. Recall the generic formula for an index nested loop join: [R]+ |R|*(cost to look up matching
records in S).

Let’s first compute the cost of R join S.

We know that |R| = [R] * pr = 100 x 10 = 1000 records.

The cost to lookup a record in the unclustered index on S.b of height 2 will cost: 3 I/Os to
read the root to the leaf node and 1 more I/O to read the actual tuple from the data page.
Since we have 5 tuples in S that match every tuple in R and the S.b index is unclustered the
cost to find the matching records in S will be 3 + 5 = 8 I/Os. Also, because the index is Alt.
3, we know all matching (key, rid) entries will be stored on the same leaf node, so we only
need to read in 1 leaf node.

Therefore, R INLJ S costs 100 4+ 1000 * 8 = 8100 I/Os.
We now compute the cost of S join R.

We know that |S| = [S] * ps = 50 * 30 = 1500 records.

The cost to lookup a record in the clustered index on R.b of height 3 will cost: 4 I/Os to
read the root to the leaf node and 1 I/O for every page of matching tuples. Since there are
20 tuples in R that satisfy the join condition for each tuple in S and pr = 10, each index
lookup will result in 2 pages of matching tuples, which costs 2 I/Os to read. Thus, the cost
to find the matching records in R will be 4 + 2 = 6 I/Os. Also, because the index is Alt. 3,
we know all matching (key, rid) entries will be stored on the same leaf node, so we only need
to read in 1 leaf node.

CS 186, Spring 2022, Course Notes 13 Jenny Huang, Lakshya Jain

CS 186
Spring 2022 [terators and Joins

Therefore, S INLJ R costs 50 4+ 1500 « 6 = 9050 I/Os.
The first join order is optimal so the cost of the INLJ is 8100 I/Os.

5. Since R is already sorted, we just have to sort S which will take 2 passes. And then we merge
the tables together using the merge pass. The total cost is therefore 2 x 2 x [S] + [R] + [S] =
4 % 50 4+ 100 4 50 = 350

6. First, we need to partition both tables into partitions of size B — 2 or smaller.
For R: ceil(100/11) = 10 pages per partition after first pass
For S: ceil(50/11) = 5 pages per partition after first pass

As we see from above, each table only needs one pass to be partitioned. We will have 100
I/O’s for reading in table R and then 11 % 10 = 110 I/O’s to write the partitins of table R
back to disk. Similar calculations are done for table S.

Then we join the corresponding partitions together. To do this, we will have to read in 11
partitions of table R and 11 partitions of table S. This gives us 1110 = 110 I/O’s for reading
partitions of table R and 11 x5 = 55 I/O’s for reading partitions of table S.

Therefore, our total I/O cost will be 100 + 110 + 50 + 55 + 110 + 55 = 480.

CS 186, Spring 2022, Course Notes 14 Jenny Huang, Lakshya Jain

