
CS 186
Spring 2021 Hashing
1 Motivation
Sometimes, sorting is a bit overkill for the problem. In a lot of cases, all we want is to group
the same value together, but we do not actually care about the order the values appear in (think
GROUP BY or de-duplication). In a database, grouping like values together is called hashing. We
cannot build a hash table in the standard way you learned in 61B for the same reason we could
not use quick sort in the last note; we cannot fit all of our data in memory! Let’s see how to build
an efficient out-of-core hashing algorithm.

2 General Strategy
Because we cannot fit all of the data in memory at once, we’ll need to build several different hash
tables and concatenate them together. There is a problem with this idea though. What happens
if we build two separate hash tables that each have the same value in them (e.g. “Brian” occurs
in both tables)? Concatenating the the tables will result in some of the “Brian”s not being right
next to each other.

To fix this, before building a hash table out of the data in memory, we need to guarantee that if
a certain value is in memory, all of its occurrences are also in memory. In other words, if “Brian”
occurs in memory at least once, then we can only build the hash table if every occurrence of “Brian”
in our data is currently in memory. This ensures that values can only appear in one hash table,
making the hash tables safe to concatenate.

3 The Algorithm
We will use a divide and conquer algorithm to solve this problem. The “divide” phase will be
partitioning passes, and the “conquer” phase will be actually constructing the hash tables. Just
like in the sorting note, we will assume that we have B buffer frames available to us.

The first partitioning pass will hash each record to B − 1 partitions. A partition is a set of pages
such that the values on the pages all hash to the same value (for the hash function used to construct
the partition). We do this by using B − 1 output buffers. When an output buffer fills up we flush
the page to disk. When that buffer fills up the next time, we place it adjacent to the page we
flushed to disk before from that same buffer. The most important property of each partition is
that if a certain value appears in that partition, all occurrences of that value in our data appear
in that partition. In other words, if “Brian” appears in that partition, “Brian” will not appear in
any other partition. This is because “Brian” always hashes to the same value, so it cannot possibly
end up in a different partition. We only have B − 1 partitions because we need to save one buffer
frame to be the input buffer.

After this first partitioning pass, we can go right to the hash table building phase for the partitions
that fit in memory. What does it mean to fit in memory? Fitting in memory means the partition

CS 186, Spring 2021, Course Notes 1 Brian DeLeonardis



CS 186
Spring 2021 Hashing
must be B pages big or less. For the partitions that are too big, we simply repartition them using a
different hash function than we used in the first pass. Why a different hash function? If we reused
the original function, every value would hash to its original partition so the partitions would not
get any smaller. We can recursively partition as many times as necessary until all of the partitions
have at most B pages.

Now all of our partitions can fit in memory, and we know that all like values occur in the same
partition. The only thing left to do is build a hash table for each partition and write each hash
table to disk.

4 Example
In the following example, we will assume that we have B = 3 buffer pages available to us. We also
assume that Brian and Eric hash to the same value for the first hash function but different values
for the second hash function, and Jamie and Lakshya hash to the same value for the first hash
function.

You can see that Partition 0 is too big because it contains 4 pages, but we only have 3 buffer frames
available to us. When it gets recursively partitioned, however, the subpartitions (0.a and 0.b) are
both only 2 pages long, so they can now fit into memory. You can also see that after the final
“conquer” pass, all of the like values are next to each other, which is our end goal.

CS 186, Spring 2021, Course Notes 2 Brian DeLeonardis



CS 186
Spring 2021 Hashing
5 Analysis of External Hashing
We’re not going to be able to create a simple formula to count the number of I/Os like in the
sorting algorithm because we do not know how large the partitions will be. One of the first things
we need to recognize is that it is possible for the number of pages in the table to increase after a
partitioning pass. To see why, consider the following table in which we can fit two integers on a
page:

[1, 2] [1, 4] [3, 4]

Let’s assume B=3, so we only divide the data into 2 partitions. Let’s assume 1 and 3 hash to
partition 1, and 2 and 4 hash to partition 2. After partitioning, partition 1 will have:

[1, 1], [3]

And partition 2 will have:

[4, 2], [4]

Notice that we now have 4 pages when we only started with 3. Therefore, the only reliable way to
count the number of I/Os is to go through each pass and see exactly what will be read and what
will be written. Let m be the total number of partitioning passes required, let ri be the number of
pages you need to read in for partitioning pass i, let wi be the number of pages you need to write
out of partitioning pass i, and let X be the total number of pages we have after partitioning that
we need to build our hash tables out of. Here is a formula for the number of I/Os:

(
m∑
i=1

ri + wi) + 2X

The summation doesn’t tell us anything that we didn’t already know; we need to go through each
pass and figure out exactly what was read and written. The final 2X part, says that in order to
build our hash tables, we need to read and write every page that we have after the partitioning
passes.

Here are some important properties:

1. r0 = N

2. ri ≤ wi

3. wi ≥ ri+1

4. X ≥ N

CS 186, Spring 2021, Course Notes 3 Brian DeLeonardis



CS 186
Spring 2021 Hashing
Property 1 says that we must read in every page during the first partitioning pass. This comes
straight from the algorithm.

Property 2 says that during a partitioning pass we will write out at least as many pages as we
read in. This comes directly from the explanation above - we may create additional pages during
a partitioning pass.

Property 3 says that we will not read in more pages than what we wrote out during the parti-
tioning pass before. In the worst case, every partition from pass i will need to be repartitioned, so
this would require us to read in every page. In most cases, however, some partitions will be small
enough to fit in memory, so we can read in fewer pages than we produced during the previous pass.

Property 4 says that the number of pages we will build our hash table out of is at least as big
as the number of data pages we started with. This comes from the fact that the partitioning passes
can only increase the number of data pages, not decrease them.

6 Practice Questions
1) How many IOs does it take to hash a 500 page table with B = 10 buffer pages? Assume that
we use perfect hash functions.

2) We want to hash a 30 page table using B=6 buffer pages. Assume that during the first partition-
ing pass, 1 partition will get 10 data pages and the rest of the pages will be divided evenly among
the other partitions. Also assume that the hash function(s) we use for recursive partitioning are
perfect. How many IOs does it take to hash this table?

3) If we had 20 buffer pages to externally hash elements, what is the minimum number of pages we
could externally hash to guarantee that we would have to use recursive partitioning?

7 Solutions
1) The first partitioning pass divides the 500 pages into 9 partitions. This means that each partition
will have 500 / 9 = 55.6 =⇒ 56 pages of data. We had to read in the 500 original pages, but
we have to write out a total of 56 * 9 = 504 because each partition has 56 pages and there are 9
partitions. The total number of IOs for this pass is therefore 500 + 504 = 1004.

We cannot fit any partition into memory because they all have 56 pages, so we need to recur-
sively partition all of them. On the next partitioning pass each partition will be divided into 9 new
partitions (so 9*9 = 81 total partitions) with 56 / 9 = 6.22 =⇒ 7 pages each. This pass needed to
read in the 504 pages from the previous pass and write out 81 * 7 = 567 pages for a total of 1071 IOs.

CS 186, Spring 2021, Course Notes 4 Brian DeLeonardis



CS 186
Spring 2021 Hashing

Now each partition is small enough to fit into memory. The final conquer pass will read in each
partition from the previous pass and write it back out to build the hash table. This means every
page from the previous pass is read and written once for a total of 567 + 567 = 1134 IOs.

Adding up the IOs from each pass gives a total of 1004 + 1071 + 1134 = 3209 IOs

2) There will be 5 partitions in total (B-1). The first partition gets 10 pages, so the other 20
will be divided over the other 4 partitions, meaning each of those partitions gets 5 buffer pages.
We had to read in all 30 pages to partition them, and we write out 5 * 4 + 10 = 30 pages as well,
meaning the first partitioning pass takes 60 IOs.

The partitions that are 5 pages do not need to be recursively partitioned because they fit in
memory. The partition that is 10 pages long, however, does. This partition will be repartitioned
into 5 new partitions of size 10/5 = 2 pages. We read in all 10 pages for this partition, and we
wrote out 5 * 2 = 10 pages, meaning that this recursive partitioning pass takes 20 IOs.

The final conquer pass needs to read in and write out every partition, so it will take 4 * 5 * 2
= 40 IOs to conquer the partitions that did not need to be repartitioned and 5 * 2 * 2 = 20 IOs to
conquer the partitions that were created from recursive partitioning, for a total of 60 IOs.

Finally, add up the IOs from each pass and get a total of 60 + 20 + 60 = 140 IOs.

3) 381 pages. Since B = 20, we can potentially hash upto B * (B - 1) = 20 * (20 - 1) =
380 pages without doing recursive partitioning. If we want to guarantee recursive partitioning, we
need one more page then this, giving us 381 pages as our solution.

Even with a perfect hash function, one page would have B+1 pages, which would require recursive
partitioning since B+1 can’t fit into memory when there are B buffer pages.

CS 186, Spring 2021, Course Notes 5 Brian DeLeonardis


