CS W186
Spring 2020

B—l— Trees

1 Introduction

An index is a data structure that helps speed up reads on a specific key. We use indexes to make
queries run faster, especially queries that are run frequently. For example, to make login faster you
may want to build an index on username so that you can quickly find the row of the user that is
trying to log in. In this course note, we will learn about B+ trees which is a specific type of index.
Here is an example of what a B+ tree looks like:

17

27

14

15 17

27

32

2 Properties

e The number d is the order of a B+ tree. Each node (with the exception of the root node)
must have d < x < 2d entries assuming no deletes happen (it’s possible for leaf nodes to end
up with < d entries if you delete data). The entries of the node must be sorted.

e In between each entry of an inner node, there is a pointer to a child node. Since there are
at most 2d entries in a node, the node may have at most 2d + 1 child pointers. This is also

called the tree’s fanout.

e The keys in the children to the left of an entry must be less than the entry while the keys in

the children to the right must be greater than or equal to the entry.

For example, here is a node of an order d = 2 tree:

14 | 17

(_ool 1)

CS W186, Spring 2020, Course Notes

(1, 14)

[14, 17)

[17, =)

Jenny Huang

CS W186
Spring 2020 B—l— TI‘GGS

Note that the node satisfies the order requirement (d < x < 2d) because d = 2 and this node has 3
entries which satisfies 2 < x < 4.

e Because of the sorted and children property, we can traverse the tree down to the leaf to find
our desired record. This is similar to BSTs (Binary Search Trees).

e Every root to leaf path has the same number of edges - this is the height of the tree. In this
sense, B+ trees are always balanced.

e Only the leaf nodes contain records (or pointers to records - this will be explained later). The
inner nodes (which are the non-leaf nodes) do not contain the actual records.

For example, here is an order d=1 tree:

17

3 Insertion

To insert an entry into the B+ tree, follow this procedure:

(1) Find the leaf node L in which you will insert your value. You can do this by traversing down
the tree. Add the key and the record to the leaf node in order.

(2) If L overflows (L has more than 2d entries)...

(a) Split into L; and Ls. Keep d entries in L (this means d + 1 entries will go in Ls).

(b) If L was a leaf node, COPY Ly’s first entry into the parent. If L was not a leaf node,
MOVE Ljy’s first entry into the parent.

(¢) Adjust pointers.

(3) If the parent overflows, then recurse on it by doing step 2 on the parent.

CS W186, Spring 2020, Course Notes 2 Jenny Huang

CS W186
Spring 2020 B—l— Trees

Note: we want to COPY leaf node data into the parent so that we don’t lose the data in the
leaf node. Remember that every key that is in the table that the index is built on must be in
the leaf nodes! Being in a inner node does not mean that key is actually still in the table. On
the other hand, we can MOVE inner node data into parent nodes because the inner node does
not contain the actual data, they are just a reference of which way to search when traversing the tree.

Let’s take a look at an example to better understand this procedure! We start with the following
order d =1 tree:

17

Let’s insert 19 into our tree. When we insert 19, we see that there is space in leaf node with 17:

17

Now let’s insert 21 into our tree. When we insert 21, it causes one of the leaf nodes to overflow.
Therefore, we split this leaf node into two leaf nodes as shown below:

CS W186, Spring 2020, Course Notes 3 Jenny Huang

CS W186
Spring 2020 B—l— TI‘GGS

17

17 19 | 21

Since we split a leaf node, we will COPY Ls’s first entry up to the parent and adjust pointers to
get:

17

17 19 | 21 || 27 | 32

Let’s do one more insertion. This time we will insert 36. When we insert 36, the leaf overflows so
we will do the same procedure as when we inserted 21 to get:

CS W186, Spring 2020, Course Notes 4 Jenny Huang

CS W186
Spring 2020

B—l— Trees

17

19 | 27 | 32

14 | 15

1

7 19 | 21 | 27 32 | 36

Notice that now the parent node overflowed, so now we must recurse. We will split the parent node

to get:

Since it was an inner node that overfl
adjust pointers to get:

CS W186, Spring 2020, Course Notes

17
5 14 19 27 | 32
2 | 4 5 14 | 15
27 32 | 36
17 19 | 21

owed, we will MOVE Ls’s first entry up to the parent and

Jenny Huang

CS W186
Spring 2020 B—l— Trees

17 | 27
5 |14 19 32
2 | 4 5 14 | 15
27 32 | 36
17 19 | 21

4 Deletion

To delete a value, just find the appropriate leaf and delete the unwanted value from that leaf.
That’s all there is to it. (Yes, technically we could end up violating some of the invariants of a B+
tree. That’s okay because in practice we get way more insertions than deletions so something will
quickly replace whatever we delete.)

Reminder: We never delete inner node keys because they are only there for search and not to
hold data.

CS W186, Spring 2020, Course Notes 6 Jenny Huang

CS W186
Spring 2020

B—l— Trees

5 Storing Records

Up until now, we have not discussed how the records are actually stored in the leaves. Let’s take
a look at that now. There are three ways of storing records in leaves:

e Alternative 1

In the Alternative 1 scheme, the leaf pages are the data pages.

Rather than containing

pointers to records, the leaf pages contain the records themselves.

12
7 |11 12 | 24
This page
looks like...
(Abby, 7) (Nick, 24)
(Ben, 11) (Patrick, 24)

e Alternative 2

In the Alternative 2 scheme, the leaf pages hold pointers to the corresponding records.

12
7 |11 24 | 24
This page
looks like...
24:
7: 24:
11:
CS W186, Spring 2020, Course Notes 7

Data Pages:

Jenny Huang

CS W186
Spring 2020 B—l— TI‘GGS

e Alternative 3

In the Alternative 3 scheme, the leaf pages hold linked lists of pointers to the corresponding
records.

12

7 12 | 24

This page
looks like...

Data Pages:

CS W186, Spring 2020, Course Notes 8 Jenny Huang

CS W186
Spring 2020

B—l— Trees

6 Clustering

Now that we’ve discussed how records are stored in the leaf nodes, we will also discuss how data on
the data pages are organized. Clustered/unclustered refers to how the data pages are structured.

Unclustering only applies to Alternative 2 or 3.

e Unclustered

In an unclustered index, the data pages are complete chaos. Thus, odds are that you’re going
to have to read a separate page for each of the records you want. For instance, consider this

illustration:

Data Pages:

12

12

24

In the figure above, if we want to read records with 12 and 24, then we would have to read in
each of the data pages they point to in order to retrieve all the records associated with these

keys.

CS W186, Spring 2020, Course Notes

Jenny Huang

CS W186
Spring 2020 B—l— TI‘GGS

e Clustered

In a clustered index, the data pages are sorted on the same index on which you’ve built your
B+ tree. This does not mean that the data pages are sorted exactly, just that keys are roughly
in the same order as data. The difference in I/O cost therefore comes from caching, where
two records with close keys will likely be in the same page, so the second one can be read
from the cached page. Thus, you typically just need to read one page to get all the records
that have a common / similar key. For instance, consider this illustration:

12

Data Pages:

In the figure above, we can read records with 7 and 12 by reading 2 pages. If we do sequential
reads of the leaf node values, the data page is largely the same. In conclusion,

e UNCLUSTERED = ~ 11/0O per record.
e CLUSTERED = ~ 11/0 per page of records.

CS W186, Spring 2020, Course Notes 10 Jenny Huang

CS W186
Spring 2020 B+ Trees

7 Counting 10’s

Here’s the general procedure. It’s a good thing to write on your cheat sheet:

(1) Read the appropriate root-to-leaf path.

(2) Read the appropriate data page(s). If we need to read multiple pages, we will allot a read 10
for each page. In addition, we account for clustering for Alt. 2 or 3 (see below.)

(3) Write data page, if you want to modify it. Again, if we want to do a write that spans multiple
data pages, we will need to allot a write IO for each page.

(4) Update index page(s).

Let’s look at an example. See the following B+ tree:

12
7 |11 24 | 24
This page
looks like...
24: Data Pages:
7: 24:
11:

We want to delete the only 11-year-old from our database. How many 1/0’s will it take?

e One I/O for each of the 2 relevant index pages (an index page is an inner node or a leaf node).

e One I/0 to read the data page where the 11-year-old’s record is. Once it’s in RAM we can
delete the record from the page.

e One I/O to write the modified data page back to disk.

e Now that there are no more 11-year-olds in our database we should remove the key ”11” from
the leaf page of our B+ tree, which we already read in Step 1. We do so, and then it takes
one I/0 to write the modified leaf page to disk.

CS W186, Spring 2020, Course Notes 11 Jenny Huang

CS W186
Spring 2020 B—l— TI‘GGS

§ Bulk Loading

The insertion procedure we discussed before is great for making additions to an existing B+ tree.
If we want to construct a B+ from scratch, however, we can do better. This is because if we use
the insertion procedure we would have to traverse the tree each time we want to insert something
new. Instead, we will use bulkloading:

(1) Sort the data on the key the index will be built on.
(2) Fill leaf pages until some fill factor f.

(3) Add pointer from parent to leaf page. If the parent overflows, we will follow a procedure
similar to insertion. We will split the parent into two nodes:

(a) Keep d entries in L (this means d + 1 entries will go in Lg).
(b) Since a parent node overflowed, we will MOVE Ly’s first entry into the parent.

(4) Adjust pointers.

Let’s look at an example. Let’s say our fill factor is % and we want to insert 1,...,20 into an order
d = 2 tree. We will start by filling a leaf page until our fill factor:

We have filled a leaf node to the fill factor of % and added a pointer from the parent node to the
leaf node. Let’s continue filling:

CS W186, Spring 2020, Course Notes 12 Jenny Huang

CS W186
Spring 2020 B—l— TI‘GGS

In the figure above, we see that the parent node has overflowed. We will split the parent node into
two nodes and create a new parent:

CS W186, Spring 2020, Course Notes 13 Jenny Huang

CS W186
Spring 2020 B—l— TI‘GGS

9 Practice Questions

1. What is the maximum number of entries we can add to the following B+ tree?

e

"
4 | 5 |14 17 || 27

2. What is the minimum number of entries we can add to the B+ tree above which will cause
the height to increase?

3. How many I/O’s would it cost to insert an entry into our table if we had a height 2, unclustered
alternative 3 B+ tree in the worst case? Assume that the cache is empty at the beginning
and there are at most 10 entries with the same key. Assume each page is at most % full.

CS W186, Spring 2020, Course Notes 14 Jenny Huang

CS W186
Spring 2020 B+ Trees

10 Solutions

1. The maximum number of entries we can add is the total capacity of a height 2, order d = 1
tree minus the current number of entries. The total capacity is (2d)(2d 4+ 1)* = (2)(3?) = 18.
The current number of entries is 6 because the entries are in the leaf nodes. Therefore, we
can add a maximum of 18 — 6 = 12.

2. The minimum number of entries we can add to cause the height to increase will be 3.

We will add 20 to the fullest leaf node which is 14,17 which will cause it to split into 14 and
17,20. Then we copy 17 to its parent 5, 14, which causes it to split into 5 and 17 and 14 will
be pushed up so the root will have 14, 27.

Then we will insert 21 into the fullest leaf which will now be 17,20, which will cause it to
split into 17 and 20,21. Then we copy 20 up to its parent which will become 17, 20.

Then we can insert 22 into the fullest leaf 20, 21 which will split into 20 and 21,22. Then we
copy 21 up to the parent 17,20, which will cause it to split into 17 and 21 because 20 will
be pushed up to its parent (the root). This root will also split because it already has 14, 27.
When the root splits, we know that the height has increased.

3. First, we need to check if our table already contains this entry. We will search down the B+
tree for the key which will cost us 3 I/O’s because the tree is height 2. Then we get to a
leaf node and we see that there are at most 10 entries with the same key. We need to check
each of these entries to make sure it’s not the same as our current entry which is 10 I/O’s
because our B+ tree is unclustered. In the worst case, none of the 10 entries match the entry
we want to insert so we will have to go ahead and add it to the table. We will add the entry
to any page that has space (we already have this page in our cache from the previous part
so this does not incur an I/O) and then writing this page back to disk which will cost 1 I/O.
We also have to update our B+ tree leaf node to include a pointer to this new entry so we
will have to write the node back to disk which is 1 I/O. Therefore, we will have a total of
3+10+1+1=151/0O’s.

CS W186, Spring 2020, Course Notes 15 Jenny Huang

