
CS W186
Spring 2020 SQL Part 1 - Basic Queries
1 Database Lingo
Relational databases are made up of tables (aka relations). A table has a name (we’ll call this one
Person) and looks like this:

name age num dogs

Ace 20 4

Ada 18 3

Ben 7 2

Cho 27 3

Tables have rows (aka tuples) and columns (aka attributes). In this example, the columns are name,
age, num dogs.

2 Querying a Table
The most fundamental SQL query looks like this:

SELECT <columns>
FROM <tb l >;

The FROM clause tells SQL which table you’re interested in, and the SELECT clause tells SQL which
columns of that table you want to see. For example, consider a table Person(name, age, num dogs)
containing the data below:

name age num dogs

Ace 20 4

Ada 18 3

Ben 7 2

Cho 27 3

If we executed this SQL query:

SELECT name , num dogs
FROM Person ;

then we could get the following output.

name num dogs

Ace 4

Ada 3

Ben 2

Cho 3

CS W186, Spring 2020, Course Notes 1 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries
In SQL, however, the order of the rows is nondeterministic unless the query contains an ORDER BY

(we’ll get to this later). So the following output is equally valid:

name num dogs

Ben 2

Cho 3

Ace 4

Ada 3

In fact, any ordering of those 4 rows is correct – so unless your query contains an ORDER BY clause,
don’t make any assumptions about the order of your results.

3 Filtering out uninteresting rows
Frequently we are interested in only a subset of the data available to us. That is, even though we
might have data about many people or things, we often only want to see the data that we have
about very specific people or things. This is where the WHERE clause comes in handy; it lets us
specify which specific rows of our table we’re interested in. Here’s the syntax:

SELECT <columns>
FROM <tb l>
WHERE <pred i cate >;

Once again, let’s consider our table Person(name, age, num dogs). Suppose we want to see how
many dogs each person owns — same as before — but this time we only care about the dog-owners
who are adults. Let’s walk through this SQL query:

SELECT name , num dogs
FROM Person
WHERE age >= 18 ;

When reasoning about query execution you can use the following rule: each clause in a SQL query
happens in the order it’s written, except for SELECT which happens last. This is not necessarily
the order the database actually does these operations (more on this later in the semester), but it
is easy to think about and will always give us the correct answer. The FROM clause tells us we’re
interested in the Person table, so this is the table we start with:

name age num dogs

Ace 20 4

Ada 18 3

Ben 7 2

Cho 27 3

Next we move on to the WHERE clause. It tells us that we only want to keep the rows satisfying the
predicate age >= 18, so we remove the row with Ben, and are left with the following table:

CS W186, Spring 2020, Course Notes 2 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries

name age num dogs

Ace 20 4

Ada 18 3

Cho 27 3

And finally, we SELECT the columns name and num dogs to obtain our final result. (Again, any
permutation of this result is equally valid so you shouldn’t make any assumptions about the order
of the rows.) This gives us our final table:

name num dogs

Ace 4

Ada 3

Cho 3

4 Boolean operators
If you want to filter on more complicated predicates, you can use the boolean operators NOT,
AND, and OR. For instance, if we only cared about dog-owners who are not only adults, but also
own more than 3 dogs, then we would write the following query:

SELECT name , num dogs
FROM Person
WHERE age >= 18

AND num dogs > 3 ;

As in Python, this is the order of evaluation for boolean operators:

1. NOT

2. AND

3. OR

That said, it is good practice to avoid ambiguity by adding parentheses even when they are not
strictly necessary.

5 Filtering Null Values
In SQL, there is a special value called NULL, which can be used as a value for any data type, and
represents an “unknown” or “missing” value.

Bear in mind that some values in your database may be NULL whether you like it or not, so
it’s good to know how SQL handles them. It pretty much boils down to the following rules:

CS W186, Spring 2020, Course Notes 3 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries

• If you do anything with NULL, you’ll just get NULL. For instance if x is NULL, then x > 3, 1
= x, and x + 4 all evaluate to NULL. Even x = NULL would evaluate to NULL; if you want to
check whether x is NULL, then write x IS NULL or x IS NOT NULL instead.

• NULL is falsey, meaning that WHERE NULL is just like WHERE FALSE. The row in question does
not get included.

• NULL short-circuits with boolean operators. That means a boolean expression involving NULL
will evaluate to:

– TRUE, if it’d evaluate to TRUE regardless of whether the NULL value is really TRUE or
FALSE.

– FALSE, if it’d evaluate to FALSE regardless of whether the NULL value is really TRUE or
FALSE.

– Or NULL, if it depends on the NULL value.

Let’s walk through this query as an example:

SELECT name , num dogs
FROM Person
WHERE age <= 20

OR num dogs = 3 ;

Let’s assume we change some values to NULL, so after evaluating the FROM clause we are left with:

name age num dogs

Ace 20 4

Ada NULL 3

Ben NULL NULL

Cho 27 NULL

Next we move on to the WHERE clause. It tells us that we only want to keep the rows satisfying the
predicate age <= 20 OR num dogs = 3. Let’s consider each row one at a time:

• For Ace, age <= 20 evaluates to TRUE so the claim is satisfied.

• For Ada,age <= 20 evaluates to NULL but num dogs = 3 evaluates to TRUE so the claim is
satisfied.

• For Ben, age <= 20 evaluates to NULL and num dogs = 3 evaluates to NULL so the overall
expression is NULL which has a falsey value.

• For Cho, age <= 20 evaluates to FALSE and num dogs = 3 evaluates to NULL so the overall
expression evaluates to NULL (because it depends on the value of the NULL). Because NULL
is falsey, this row will be excluded.

Thus we keep only Ace and Ada.

CS W186, Spring 2020, Course Notes 4 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries
6 Grouping and Aggregation
When you’re working with a very large database, it is useful to be able to summarize your data so
that you can better understand the general trends at play. Let’s see how.

6.1 Summarizing columns of data

With SQL you are able to summarize entire columns of data using built-in aggregate functions.
The most common ones are SUM, AVG, MAX, MIN, and COUNT. Here are some important characteristics
of aggregate functions:

• The input to an aggregate function is the name of a column, and the output is a single value
that summarizes all the data within that column.

• Every aggregate ignores NULL values except for COUNT(*). (So COUNT(<column>) returns the
number of non-NULL values in the specified column, whereas COUNT(*) returns the number
of rows in the table overall.)

For example, consider this variant of our table People(name, age, num dogs) from earlier, where
we are now unsure how many dogs Ben owns:

name age num dogs

Ace 20 4

Ada 18 3

Ben 7 NULL

Cho 27 3

With this table in mind ...

• SUM(age) is 72.0, and SUM(num dogs) is 10.0.

• AVG(age) is 18.0, and AVG(num dogs) is 3.3333333333333333.

• MAX(age) is 27, and MAX(num dogs) is 4.

• MIN(age) is 7, and MIN(num dogs) is 3.

• COUNT(age) is 4, COUNT(num dogs) is 3, and COUNT(*) is 4.

So, if we desired the range of ages represented in our database, then we could use the query below
and it would produce the result 20. (Technically it would produce a one-by-one table containing
the number 20, but SQL treats it the same as the number 20 itself.)

SELECT MAX(age) − MIN(age)
FROM Person ;

Or, if we desired the average number of dogs owned by adults, then we could write this:

CS W186, Spring 2020, Course Notes 5 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries
SELECT AVG(num dogs)
FROM Person
WHERE age >= 18 ;

6.2 Summarizing Groups of Data

Now you know how to summarize an entire column of your database into a single number. More
often than not, though, we want a little finer granularity than that. This is possible with the GROUP

BY clause, which allows us to split our data into groups and then summarize each group separately.
Here’s the syntax:

SELECT <columns>
FROM <tb l>
WHERE <pred i cate> −− F i l t e r out rows (b e f o r e grouping) .
GROUP BY <columns>
HAVING <pred i cate >; −− F i l t e r out groups (a f t e r grouping) .

Notice we also have a brand new HAVING clause, which is actually very similar to WHERE. The
difference?

• WHERE occurs before grouping. It filters out uninteresting rows.

• HAVING occurs after grouping. It filters out uninteresting groups.

To explore all these new mechanics let’s see another step-by-step example. This time our query
will find the average number of dogs owned, for each adult age represented in our database. We
will exclude any age for which we only have one datum.

SELECT age , AVG(num dogs)
FROM Person
WHERE age >= 18
GROUP BY age
HAVING COUNT(∗) > 1 ;

Let us assume the Person table is now:

name age num dogs

Ace 20 4

Ada 18 3

Ben 7 2

Cho 27 3

Ema 20 2

Ian 20 3

Jay 18 5

Mae 33 8

Rex 27 1

CS W186, Spring 2020, Course Notes 6 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries
Next we move on to the WHERE clause. It tells us that we only want to keep the rows satisfying the
predicate age >= 18, so we remove the row with Ben.

name age num dogs

Ace 20 4

Ada 18 3

Cho 27 3

Ema 20 2

Ian 20 3

Jay 18 5

Mae 33 8

Rex 27 1

Now for the interesting part. We arrive at the GROUP BY clause, which tells us to categorize the
data by age. We end up with a group of all the adults 20 years old, a group of all the adults 18
years old, a group of all the adults 27 years old, and a group of all the adults 33 years old. You
can now think of the table like this:

name age num dogs

Ace 20 4
Ema 20 2
Ian 20 3

Ada 18 3
Jay 18 5

Cho 27 3
Rex 27 1

Mae 33 8

The HAVING clause tells us we only want to keep the groups satisfying the predicate COUNT(*) >

1 — that is, the groups that contain more than one row. We discard the group that contains only
Mae.

name age num dogs

Ace 20 4
Ema 20 2
Ian 20 3

Ada 18 3
Jay 18 5

Cho 27 3
Rex 27 1

Last but not least, every group gets collapsed into a single row. According to our SELECT clause,
each such row must contain two things:

CS W186, Spring 2020, Course Notes 7 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries

• The age corresponding to the group.

• The AVG(num dogs) for the group.

Our final result looks like this:

age AVG(num dogs)

20 3.0

18 4.0

27 2.0

So, to recap, here’s how you should go about a query that follows the template above:

• Start with the table specified in the FROM clause.

• Filter out uninteresting rows, keeping only the ones that satisfy the WHERE clause.

• Put data into groups, according to the GROUP BY clause.

• Filter out uninteresting groups, keeping only the ones that satisfy the HAVING clause.

• Collapse each group into a single row, containing the fields specified in the SELECT clause.

7 A Word of Caution
So that’s how grouping and aggregation work, but before we move on I must emphasize one last
thing regarding illegal queries. We’ll start by considering these two examples:

1. Though it’s not immediately obvious, this query actually produces an error:

SELECT age , AVG(num dogs)
FROM Person ;

What’s the issue? age is an entire column of numbers, whereas AVG(num dogs) is just a single
number. This is problematic because a properly formed table must have the same amount of rows
in each column.

2. This query does not work either, for a very similar reason:

SELECT age , num dogs
FROM Person
GROUP BY age ;

After grouping by age we obtain a table like this:

CS W186, Spring 2020, Course Notes 8 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries

name age num dogs

Ace 20 4
Ema 20 2
Ian 20 3

Ada 18 3
Jay 18 5

Cho 27 3
Rex 27 1

Mae 33 8

Then the SELECT clause’s job is to collapse each group into a single row. Each such row must
contain two things:

• The age corresponding to the group, which is a single number.

• The num dogs for the group, which is an entire column of numbers.

The takeaway from all this? If you’re going to do any grouping / aggregation at all, then you must
only SELECT grouped / aggregated columns.

8 Order By
Before, we mentioned that the ordering of the output rows was usually nondeterministic in SQL.
If you want the rows of your table to appear in a certain order you must use an ORDER BY clause.

Here is an example query using an ORDER BY clause:

SELECT name , num dogs
FROM Person
ORDER BY num dogs , name ;

You can include as many columns as you want in the ORDER BY clause. We first sort on the
first column listed, and then break any ties with the second column listed, and then break any
remaining ties with the third column listed, and so on. By default, the sort order is ascending, but
if we want the order in descending order we add the DESC keyword after the column name. If we
wanted to sort by the num dogs ascending and break ties by name descending, we would use the
following query:

SELECT name , num dogs
FROM Person
ORDER BY num dogs , name DESC;

CS W186, Spring 2020, Course Notes 9 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries
9 Limit
Sometimes we only want to see a few rows in our table, even if more rows match all of our other
conditions. To do this we can add a LIMIT clause to the end of our query to cap the number of rows
that will be returned. Note: the same rows may not always be returned by queries using LIMIT if
an ORDER BY is not used or if there are ties in the ordering. Here is a query that only returns one
row:

SELECT name , num dogs
FROM Person
LIMIT 1 ;

10 Conclusion
Congratulations - we have covered a lot of SQL! To help remember the ordering of the SQL stages,
here is the syntax of a query involving the expressions we have learned so far:

SELECT <columns>
FROM <tb l>
WHERE <pred i cate>
GROUP BY <columns>
HAVING <pred i cate>
ORDER BY <columns>
LIMIT <num>;

11 Practice Questions
We have a dogs table that looks like this:

CREATE TABLE dogs (
dogid in t ege r ,
ownerid in t ege r ,
name varchar ,
breed varchar ,
age i n t e g e r
)

1. Write a query that finds the name of every dog that has an ownerid=3.

2. Write a query that lists the 5 oldest dogs’ name and age. Break ties by the dog’s name in
ascending alphabetical order.

CS W186, Spring 2020, Course Notes 10 Brian DeLeonardis

CS W186
Spring 2020 SQL Part 1 - Basic Queries

3. Write a query that shows how many dogs we have for each breed, but only for breeds that
have multiple dogs.

12 Solutions
1.

SELECT name
FROM dogs
WHERE ownerid = 3 ;

We’re only looking for the name, so that is the only column that goes in the SELECT clause.
We are selecting it from the dogs table so the dogs table goes in the FROM clause. We add
the only predicate (ownerid=3) to the WHERE clause.

2.

SELECT name , age
FROM dogs
ORDER BY age DESC, name
LIMIT 5 ;

To find the 5 oldest dogs we will order them by their age (in descending order) and then limit
the number of rows returned by our query to 5. The final piece is we need to add a second
column to the ORDER BY clause to break ties.

3.

SELECT breed , COUNT(∗)
FROM dogs
GROUP BY breed
HAVING COUNT(∗) > 1 ;

To get statistics for the breeds, we will GROUP BY the breeds column. To only select the
groups that have multiple dogs, we add the COUNT(*) > 1 predicate to the having clause.

Thanks to Sequioa who we have taken a large portion of this note from: https://sequoia-tree.github.io/
relational-databases/sql-dml.html

CS W186, Spring 2020, Course Notes 11 Brian DeLeonardis

