
CS 186
Spring 2023 Relational Algebra
1 Motivation
In the previous notes we talked about how SQL is a declarative programming language. This means
that you specify what you want, but you don’t have to specify how to do it. This is great from a
user’s perspective as it makes the queries much easier to write. As database engineers, however, we
often want a language that is more expressive. When we study query optimization in a few weeks
we’re going to want a way to express the many different valid plans a database can use to execute
a query. For this we will use Relational Algebra, a procedural programming language (meaning
that the query specifies exactly what operators to use and in what order).

2 Relational Algebra Introduction
All of the operators in relational algebra take in a relation and output a relation. A basic query
looks like this:

πname(dogs)

The π operator picks only the columns that it wants to advance to the next operator (just like
SQL SELECT). In this case, the operator takes the dogs relation in as a parameter and returns a
relation that only has the name column of the dogs relation. An important fact about relational
algebra is that the relations are sets of tuples, meaning that they cannot have duplicates in them.
If the dogs relation is initially:

name age

Scooby 10

Buster 15

Buster 20

The query above would return:

name

Scooby

Buster

Initially the two Busters are different because they have different ages, but once you get rid of the
age column, they become duplicates, so only one remains in the output relation.

Let’s formally introduce the relational algebra operators.

3 Projection (π)
We have already been introduced to the projection operator which takes in a single relation as
input and selects only the columns specified. The columns are specified in the subscript of the

CS 186, Spring 2023, Course Notes 1 Brian DeLeonardis

CS 186
Spring 2023 Relational Algebra
operator like almost all parameters to operators. The output schema of projection is determined
by the schema of the column list. The projection operator is relational algebra’s version of the SQL
SELECT clause.

We now can express SQL queries involving just the SELECT and FROM clauses with relational
algebra. For example the SQL query:

SELECT name FROM dogs ;

Can be represented with the expression we introduced in section 2:

πname(dogs)

Note that there is no operator equivalent to the FROM operator in relational algebra because the
parameters of these operators specify which tables we pull from.

4 Selection (σ)
The selection operator takes in a single relation and filters rows based on a certain condition.
The output schema will be the same as the input schema, and duplicate elimination is not needed
for selection. Don’t let the name confuse you - this operator is equivalent to SQL’s WHERE clause,
not its SELECT clause. Let’s try to express the following query in terms of relational algebra:

SELECT name , age FROM dogs WHERE age = 12 ;

The equivalent relational algebra expression is:

σage=12(πname,age(dogs))

Another correct expression for that query is:

πname,age(σage=12(dogs))

This illustrates the beauty of relational algebra. There is only one (reasonable) way to write
SQL for what the query is trying to accomplish, but we can come up with multiple different ex-
pressions in relational algebra that get the same result. In the first expression we select only the
columns we want first, and then we filter out the rows we don’t want. In the second we filter the rows
first and then select the columns. We will soon learn ways to evaluate which of these plans is better!

The selection operator also supports compound predicates. The ∧ symbol corresponds to the
AND keyword in SQL and the ∨ symbol corresponds to the OR keyword. For example,

SELECT name , age FROM dogs WHERE age = 12 AND name = ‘Timmy ’ ;

is equivalent to
πname,age(σage=12∧name=‘T immy′(dogs))

CS 186, Spring 2023, Course Notes 2 Brian DeLeonardis

CS 186
Spring 2023 Relational Algebra
5 Union (∪)
The first way we will learn how to combine data from different relations is with the union operator.
Just like the UNION clause in SQL, we take all the rows from each tuple and combine them removing
duplicates along the way. As an example, say we have a dogs table:

name age

Scooby 10

Buster 15

Garfield 20

and a cats table that looks like this:

name age

Tom 8

Garfield 10

The expression:
πname(dogs) ∪ πname(cats)

would return:

name

Scooby

Buster

Tom

Garfield

Note that Garfield only shows up once because relations are sets of tuples and remove all duplicates
as a result. Additionally, note that one rule for all of these set operators is that they must operate
on relations that have the same number of attributes (columns), and the attributes in corresponding
positions must have the same type. It would not be legal to union a relation with two columns
with a relation that only has one column nor would it be legal to union a relation with a column
of strings with another relation with one column of ints.

6 Set Difference (-)
Another set operator is the set difference operator. Same as with union, both input relations
must be compatible (the columns must be in the same order with the same type). Set difference
is equivalent to the SQL clause EXCEPT. It returns every row in the first table except the rows
that also show up in the second table. Similar to selection, no duplicate elimination is needed for
set difference. If you run:

πname(dogs)− πname(cats)

expression on the dogs and cats table introduced in the previous section you would get:

CS 186, Spring 2023, Course Notes 3 Brian DeLeonardis

CS 186
Spring 2023 Relational Algebra

name

Scooby

Buster

Garfield does not show up because he is in the cats table, and none of the cats’ names will show
up because it is only possible for rows from the first relation to show up in the output.

7 Intersection (∩)
Intersection is just like the INTERSECT SQL operator in that it only keeps rows that occur in
both tables in the intersection. If you run:

πname(dogs) ∩ πname(cats)

on the tables introduced in section 5 you would get:

name

Garfield

because Garfield is the only name to occur in both tables.

8 Cross Product (×)
The cross product operator is just like performing a Cartesian product in SQL. The output is one
tuple for every possible pair of tuples from both relations. The schemas of the two input relations
do not have to be compatible because cross product directly concatenates them. No duplicate
elimination is needed because none will be generated. As an example, say we have a dogs table:

name age

Scooby 10

Buster 15

Garfield 20

and a parks table:

park city

Golden Gate Park San Francisco

Central Park New York City

The relational algebra equivalent of

SELECT ∗ FROM dogs , parks ;

CS 186, Spring 2023, Course Notes 4 Brian DeLeonardis

CS 186
Spring 2023 Relational Algebra
is

dogs× parks

and the output will be:

name age park city

Scooby 10 Golden Gate Park San Francisco

Scooby 10 Central Park New York City

Buster 15 Golden Gate Park San Francisco

Buster 15 Central Park New York City

Garfield 20 Golden Gate Park San Francisco

Garfield 20 Central Park New York City

In fact, the cross product (×) is the basis for the inner join, which we will go over next.

9 Joins (▷◁)
We haven’t yet discussed how to represent joins in relational algebra - let’s fix that! To inner join
two tables together, write the left table on the left of the ▷◁ operator, put the join condition in the
subscript, and put the right operator on the right side. To join together the cats table with the
dogs table on the name column, you would write:

cats ▷◁cats.name=dogs.name dogs

If you don’t specify the join condition, it becomes a natural join. Recall from the SQL notes that a
natural join joins together all columns from each table with the same name. Therefore, you could
also write the same query as above like:

cats ▷◁ dogs

Formally, we refer to the inner join operator as a Theta Join (▷◁θ). The θ refers to the join
condition, so for the expression from above, the θ join condition is cats.name = dogs.name.

The ▷◁ operator performs an inner join, which is the only join we will cover for relational alge-
bra expressions in this class. There are ways to derive right, left, and full outer joins from the
operators we have already introduced, but that is beyond the scope of this class.

Just like the selection operator σ, the join operator ▷◁ also supports the compound predicate
operators ∧ (AND) and ∨ (OR).

Theta joins and natural joins can actually be derived from just a cross product (×) and a conjunc-
tion of selections (σ). For example,

cats ▷◁θ dogs

CS 186, Spring 2023, Course Notes 5 Brian DeLeonardis

CS 186
Spring 2023 Relational Algebra
can be rewritten as

σθ(cats× dogs)

and the natural join
cats ▷◁ dogs

can be rewritten as
σcats.col1=dogs.col1∧...∧cats.colN=dogs.colN (cats× dogs)

10 Rename (ρ)
The rename operator essentially accomplishes the same thing as aliasing in SQL. It is used to
change the schema by renaming the relations and/or their attributes. For example, if you wanted
to avoid having to include the table name for the rest of the expression like you would for the
expressions in the join section, you could instead write:

cats ▷◁name=dname ρname−>dname(dogs)

This expression renames the dogs relation’s name column to dname first, so there is no conflict in
column names. You can no longer use a natural join anymore because the columns do not have
the same name, but you no longer need to specify which relation the column is coming from if you
want to include other operators.

11 Group By / Aggregation (γ)
The final relational algebra operator we will cover is the groupby / aggregation operator, which
is essentially equivalent to using the GROUP BY and HAVING clauses in SQL. For example, the
SQL query

SELECT age FROM dogs GROUPBY age HAVINGCOUNT(∗) > 5 ;

can be expressed in relational algebra as

γage,COUNT (∗)>5(dogs)

Furthermore, the γ operator can be used to select aggregate columns, such as MAX, MIN, SUM,
COUNT, etc. from SQL. This modified query from earlier

SELECT age , SUM(weight) FROM dogs GROUPBY age HAVINGCOUNT(∗) > 5 ;

can be expressed in relational algebra as

γage,SUM(weight),COUNT (∗)>5(dogs)

CS 186, Spring 2023, Course Notes 6 Brian DeLeonardis

CS 186
Spring 2023 Relational Algebra
12 Practice Questions
Given the following two relations:
teams(teamid, name)

players(playerid, name, teamid, position)

Answer the following questions:

1. Write an expression that finds the name and playerid of every player that plays the “center”
position.

2. Write an expression that finds the name of every player that plays on the “Warriors”. How
would this expression change if we renamed players’ teamid column to pteamid?

3. Write an expression that finds the teamid of all teams that do not have any players.

4. Write an expression that is equivalent to the following SQL query:
SELECT teamid AS t i d
FROM p l aye r s
WHERE p l aye r s . teamid NOT IN

(SELECT teamid FROM teams)
AND position=’ shoot ing guard ’ ;

13 Solutions
1. πname,playerid(σposition=′center′(players)). We first filter out the rows for players who aren’t

centers, then we project only the columns that we need.

2. πplayers.name(σteams.name=′Warriors′(teams ▷◁teams.teamid=players.teamid players)). We first join
together the teams and players table to get all the information that we need, then we filter
out the rows that aren’t for players who play for the Warriors, then we finally project the
only column that we’re looking for.

3. πteamid(teams) − πteamid(players). All teams must be in the teams table so we first get all
their teamids. Then we subtract any teamid that appears in the players table, because if that
teamid appears in the players table it implies that the team has a player on it. We are then
left with only teamids of teams that don’t have any players.

4. ρteamid−→tid(πteamid(σposition=′shooting guard′(players))−
πplayers.teamid(players ▷◁players.teamid=teams.teamid teams))
We first filter out rows for players who aren’t shooting guards, then we only project the
column we need, teamid. We then use set difference to only keep players who play for a team
not in the teams table. Finally, we use the renaming operator to rename teamid to tid.

CS 186, Spring 2023, Course Notes 7 Brian DeLeonardis

