
CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries
In our Part 1 note we only looked into querying from one table. Often, however, the data we need
to answer a question will be stored in multiple tables. To query from two tables and combine the
results we use a join.

1 Cross Join
The simplest join is called cross join, which is also known as a cross product or a cartesian product.
A cross join is the result of combining every row from the left table with every row from the right
table. To do a cross join, simply comma separate the tables you would like to join. Here is an
example:

SELECT ∗
FROM courses , enro l lment ;

If the courses table looked like this:

num name

CS186 DB

CS188 AI

CS189 ML

And the enrollment table looked like this:

c num students

CS186 700

CS188 800

The result of the query would be:

num name c num students

CS186 DB CS186 700

CS186 DB CS188 800

CS188 AI CS186 700

CS188 AI CS188 800

CS189 ML CS186 700

CS189 ML CS188 800

The cartesian product often contains much more information than we are actually interested in.
Let’s say we wanted all of the information about a course (num, name, and num of students enrolled
in it). We cannot just blindly join every row from the left table with every row from the right table.
There are rows that have two different courses in them! To account for this we will add a join
condition in the WHERE clause to ensure that each row is only about one class.

To get the enrollment information for a course properly we want to make sure that num in the
courses table is equal to c num in the enrollment table because they are the same thing. The
correct query is:

CS 186, Fall 2020, Course Notes 1 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries
SELECT ∗
FROM courses , enro l lment
WHERE num = c num ;

which produces:

num name c num students

CS186 DB CS186 700

CS188 AI CS188 800

Notice that CS189, which was present in the courses table but not in the enrollment table, is
not included. Since it does not appear as a c num value in enrollment, it cannot fulfill the join
condition num = c num.

If we really want CS189 to appear anyway, there are ways to do this that we will discuss later.

2 Inner Join
The cross join works great, but it seems a little sloppy. We are including join logic in the WHERE

clause. It can be difficult to find what the join condition is. In contrast, the inner join allows you
to specify the condition in the ON clause. Here is the syntax:

SELECT column name (s)
FROM tab l e1
INNER JOIN tab l e2
ON table1 column name = table2 column name ;

The table1 column name = table2 column name is the join condition. Let’s write the query that
gets us all of the course information as an inner join:

SELECT ∗
FROM cour s e s INNER JOIN enro l lment
ON num = c num ;

This query is logically the exact same query as the query we ran in the previous section. The inner
join is essentially syntatic sugar for a cross join with a join condition in the WHERE clause like we
demonstrated before.

3 Outer Joins
Now lets address the problem we encountered before when we left out CS189 because it did not
have any enrollment information. This situation happens frequently. We still want to keep all the
data from a relation even if it does not have a “match” in the table we are joining it with. To fix
this problem we will use a left outer join. The left outer join makes sure that every row from

CS 186, Fall 2020, Course Notes 2 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries
the left table will appear in the output. If a row does not have any matches with the right table,
the row is still included and the columns from the right table are filled in with NULL. Let’s fix our
query:

SELECT ∗
FROM cour s e s LEFT OUTER JOIN enro l lment
ON num = c num ;

This will produce the following output:

num name c num students

CS186 DB CS186 700

CS188 AI CS188 800

CS189 ML NULL NULL

Notice that CS189 is now included and the columns that should be from the right table (c num,

students) are NULL.

The right outer join is the exact same thing as the left outer join but it keeps all the rows
from the right table instead of the left table. The following query is identical to the query above
that uses the left outer join:

SELECT ∗
FROM enro l lment RIGHT OUTER JOIN cour s e s
ON num = c num ;

Notice that I flipped the order of the joins and changed LEFT to RIGHT because now courses is on
the right side.

Let’s say we add a row to our enrollment table now:

c num students

CS186 700

CS188 800

CS160 400

But we still want to present all of the information that we have. If we just use a left or a right join
we have to pick between using all of the information in the left table or all of the information in the
right table. With what we know so far, it is impossible for us to include the information that we
have about both CS189 and CS160 because they occur in different tables and do not have matches
in the other table. To fix this we can use the full outer join which guarantees that all rows from
each table will appear in the output. If a row from either table does not have a match it will still
show up in the output and the columns from the other table in the join will be NULL.

To include all of data we have let’s change the query to be:

CS 186, Fall 2020, Course Notes 3 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries
SELECT ∗
FROM cour s e s FULL OUTER JOIN enro l lment
ON num = c num ;

which produces the following output:

num name c num students

CS186 DB CS186 700

CS188 AI CS188 800

CS189 ML NULL NULL

NULL NULL CS160 400

4 Name Conflicts
Up to this point our tables have had columns with different names. But what happens if we change
the enrollment table so that it’s c num column is now called num?

num students

CS186 700

CS188 800

CS160 400

Now there is a num column in both tables, so simply using num in your query is ambiguous. We
now have to specify which table’s column we are referring to. To do this, we put the table name
and a period in front of the column name. Here is an example of doing an inner join of the two
tables now:

SELECT ∗
FROM cour s e s INNER JOIN enro l lment
ON cour s e s .num = enro l lment .num;

The result is:

num name num students

CS186 DB CS186 700

CS188 AI CS188 800

It can be annoying to type out the entire table name each time we refer to it, so instead we can
alias the table name. This allows us to rename the table for the rest of the query as something
else (usually only a few characters). To do this, after listing the table in the FROM we add AS

<alias name>. Here is an equivalent query that uses aliases:

SELECT ∗
FROM cour s e s AS c INNER JOIN enro l lment AS e
ON c .num = e .num;

CS 186, Fall 2020, Course Notes 4 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries

num name num students

CS186 DB CS186 700

CS188 AI CS188 800

5 Natural Join
Often in relational databases, the columns you want to join on will have the same name. To make
it easier to write queries, SQL has the natural join which automatically does an equijoin (equijoin
= checks if columns are equivalent) on columns with the same name in different tables.

The following query is the same as explicitly doing an inner join on the num columns in each
table:

SELECT ∗
FROM cour s e s NATURAL JOIN enro l lment ;

The join condition: courses.num = enrollment.num is implicit. While this is convenient, natural
joins are not often used in practice because they are confusing to read and because adding columns
that are not related to the query can change the output.

6 Subqueries
Subqueries allow you to write more powerful queries. Let’s look at an example...

Let’s say you want to find the course num of every course that has a higher than average num
of students. You cannot include an aggregation expression (like AVG) in the WHERE clause because
aggregation happens after rows have been filtered. This may seem challenging at first, but sub-
queries make it easy:

SELECT num
FROM enro l lment
WHERE students >= (

SELECT AVG(students)
FROM enro l lment ;

) ;

The output of this query is:

num

CS188

CS186

The inner subquery calculated the average and returned one row. The outer query compared the
students value for each row to what the subquery returned to determine if the row should be kept.

CS 186, Fall 2020, Course Notes 5 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries
Note that this query would be invalid if the subquery returned more than one row because >= is
meaningless for more than one number. If it returned more than one row we would have to use a
set operator like ALL.

7 Correlated Subqueries
The subquery can also be correlated with the outer query. Each row essentially gets plugged in to
the subquery and then the subquery uses the values of that row. To illustrate this point, let’s write
a query that returns all of the classes that appear in both tables.

SELECT ∗
FROM c l a s s e s
WHERE EXISTS (

SELECT ∗
FROM enro l lment
WHERE c l a s s e s .num = enro l lment .num

) ;

As expected, this query returns:

num name

CS188 AI

CS186 DB

Let’s start by examining the subquery. It compares the classes.num (the num of the class from
the current row) to every enrollment.num and returns the row if they match. Therefore, the only
rows that will ever be returned are rows with classes that occur in each table. The EXISTS keyword
is a set operator that returns true if any rows are returned by the subquery and false if otherwise.
For CS186 and CS188 it will return true (because a row is returned by the subquery), but for CS189
it will return false. There are a lot of other set operators you should know (including ANY, ALL,
UNION, INTERSECT, DIFFERENCE, IN) but we will not cover any others in this note (there is plenty
of documentation for these operators online).

8 Subqueries in the From
You can also use subqueries in the FROM clause. This lets you create a temporary table to query
from. Here is an example:

SELECT ∗
FROM (

SELECT num
FROM c l a s s e s

) as a
WHERE num = ’ CS186 ’ ;

CS 186, Fall 2020, Course Notes 6 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries
Returns:

num

CS186

The subquery returns only the num column of the original table, so only the num column will appear
in the output. One thing to note is that subqueries in the FROM cannot usually be correlated with
other tables listed in the FROM. There is a work around for this, but it is out of scope for this course.

A cleaner way of doing this is using common table expressions (or views if you want to reuse
the temporary table in other queries) but we will not cover this in the note.

9 Practice Questions
We will reuse the dogs table from part 1:

CREATE TABLE dogs (
dogid in t ege r ,
ownerid in t ege r ,
name varchar ,
breed varchar ,
age in t ege r ,
PRIMARY KEY (dogid) ,
FOREIGN KEY (ownerid) REFERENCES use r s (u s e r i d)

) ;

and add an owners table that looks like this:

CREATE TABLE use r s (
u s e r i d in t ege r ,
name varchar ,
age in t ege r ,
PRIMARY KEY (u s e r i d)

) ;

The users own dogs. The ownerid column in the dogs table corresponds to the userid column of
the users table (ownerid is a foreign key that references the users table).

1. Write a query that lists the names of all the dogs that “Josh Hug” owns.

2. Write the query above using a different kind of join (i.e. if you used an INNER JOIN, try
using a cross join with the join condition in the WHERE).

3. Write a query that finds the name of the user and the number of dogs that user owns for the
user that owns the most dogs in the database. Assume that there are no ties (i.e. this query
should only return 1 user). Users may share the same name.

CS 186, Fall 2020, Course Notes 7 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries

4. Now write the same query again, but you can no longer assume that there are no ties.

10 Solutions
1)

SELECT dogs . name
FROM dogs INNER JOIN use r s ON dogs . ownerid = use r s . u s e r i d
WHERE use r s . name=”Josh Hug” ;

We now need information from both tables (the dog name is only in the dogs table and the owner
name is only in the users table). The join condition is dogs.ownerid=users.userid because we
only want to get rows with the dog and its owner in it. Finally we add the predicate to the WHERE
clause to only get Josh’s dogs.

2)

SELECT dogs . name
FROM dogs , u s e r s
WHERE dogs . ownerid = use r s . u s e r i d and use r s . name=”Josh Hug” ;

We first do a cross join and then add our join condition to the WHERE clause.

3)

SELECT use r s . name , COUNT(∗)
FROM use r s INNER JOIN dogs on us e r s . u s e r i d = dogs . ownerid
GROUP BY use r s . user id , u s e r s . name
ORDER BY COUNT(∗) DESC
LIMIT 1 ;

Similarly to question 2 in the part 1 notes, we can use an ORDER BY combined with a LIMIT to
select the first n most rows (with n being 1 in this case). We GROUP BY the name because we
want our groups to be all about one user. We have to include userid in the GROUP BY, because
users may share the same name.

4)

SELECT use r s . name , COUNT(∗)
FROM use r s INNER JOIN dogs ON use r s . u s e r i d = dogs . ownerid
GROUP BY use r s . user id , u s e r s . name
HAVING COUNT(∗) >= a l l (

SELECT COUNT(∗)
FROM dogs
GROUP BY ownerid

CS 186, Fall 2020, Course Notes 8 Brian DeLeonardis

CS 186
Fall 2020 SQL Part 2 - Joins and Subqueries
)

The inner query gets the number of dogs owned by each owner. The owner(s) with the max number
of dogs must have a number of dogs that is >= all these rows in order to be the max. We put this
condition in the HAVING rather than the WHERE clause because it pertains to the groups not
the individual rows.

CS 186, Fall 2020, Course Notes 9 Brian DeLeonardis

