
CS W186
Fall 2019 Parallel Query Processing
1 Introduction to Parallelism

Parallel processing is used to efficiently solve problems that can be decomposed into independent
subproblems. In this note, we see parallelism in two main ways:

• Parallelism through pipelining - each operator processes the previous operator’s output as it
is being produced

• Parallelism through Partitioning - partition data across multiple machines so that algorithms
can be executed in parallel

When it comes to hardware that can handle parallel execution, three main architectures exist:

• Shared Memory - one or more CPUs with both shared memory and disk on one machine

• Shared Disk - one or more CPUs with independent memory and shared disk on one machine

• Shared Nothing - one of more machines connected by a network

Out of these architectures, Shared Nothing architectures are the most common for databases as
scaling is made simple by adding more machines to the network when accommodating higher loads.

2 Query Parallelism

Queries can be parallelized using either Inter-Query parallelism or Intra-Query parallelism.
Inter-Query parallelism involves executing multiple queries at once and relies on transactions while
Intra-Query parallelism involves splitting a single query into operators that can be executed con-
currently.

Intra-Query parallelism can be further separated into two categories: Inter-Operator paral-
lelism and Intra-Operator parallelism. Inter-Operator parallelism works by either pipelining
operators or executing operators in parallel. Meanwhile, Intra-Operator parallelism focuses on
parallelizing single operators by partitioning data across machines using range, hash, or round
robin and executing algorithms locally on each machine.

For parallel operations, network costs must be considered and these costs are measured by looking
at the total size of pages sent over the network in bytes.

An important note is that if a database has a Shared Nothing architecture, large relations are

CS W186, Fall 2019, Course Notes 1 Jeremy Dong



CS W186
Fall 2019 Parallel Query Processing
already initially distributed across machines. When partitioning, each machine’s data is redis-
tributed to a machine associated with a given hash or key range.

3 Parallel Hashing
External hashing can be parallelized by partitioning data across machines using a hash function
h1. As the data is distributed, each machine will independently run the external hashing algorithm
using new hash functions h2, ..., hk.

4 Parallel Grace Hash Join

Grace Hash Join can be parallelized similarly to how external hashing is parallelized. Since a
join involves two relations, each of the relation’s data is partitioned across machines using a hash
function h1 and joined locally by running Grace Hash Join. Once a machine starts receiving data,
it can execute independently from all other machines.

5 Parallel Sorting

External sorting can be parallelized by partitioning using ranges. Each machine is assigned a range
of keys and data with keys falling in a specified range are sent to that associated machine. As the
data is distributed, each machine will independently run the external sorting algorithm.

A potential downside of range partitioning is data skew. Different machines can end up with

CS W186, Fall 2019, Course Notes 2 Jeremy Dong



CS W186
Fall 2019 Parallel Query Processing
drastically different amounts of data if lots of data fall within some ranges and not others. This
can be fixed by sampling the data and determining a distribution before assigning ranges so that
data can be spread more evenly across machines.

6 Parallel Sort Merge Join

Sort Merge join can be parallelized in the same way that external sorting is parallelized. Data
from each relation in the join is range partitioned across machines and each machine independently
executes the sort merge join algorithm locally.

7 One-Sided Shuffle Join
If one relation is already roughly partitioned across machines, partition the other relation and run
a local join at every machine. The method of partitioning and the join algorithm depend on how
the first relation is initially distributed.

8 Broadcast Join

If one relation is small, it is initially stored only on one machine and broadcasted to all other ma-
chines containing a partition of the other relation so that local joins can be performed in parallel.

Assuming n = size(file1) in pages, m = size(file2) in pages, n < m, k = # of machines storing
partitions of the 2nd file, and the machine storing the 1st file does not contain a partition of the
2nd file, the way to determine when a a broadcast join is advantageous is when the following
condition is met:

CS W186, Fall 2019, Course Notes 3 Jeremy Dong



CS W186
Fall 2019 Parallel Query Processing

n ∗ k < n + m

If the condition is satisfied, it means that sending the smaller relation to k machines costs less than
partitioning both relations across all machines.

CS W186, Fall 2019, Course Notes 4 Jeremy Dong


