
CS W186
Fall 2019 Iterators and Joins
1 Introduction

Let’s begin with the simplest question: what, exactly, is a join? If you remember the SQL project,
you’ll remember writing things like R INNER JOIN S ON R.name = S.name and other similar state-
ments.

What that actually meant is that you take two relations, R and S, and create one new relation
out of their matches on the join condition – that is, for each record ri in R, find all records sj in S

that match the join condition we have specified and write < ri, sj > as a new row in the table (all
the fields of r followed by all the fields of s). The SQL lecture slides are a great resource for more
clarifications on what joins actually are.1

1notation aside: [T] is the number of pages in table T and |T| is the number of records in table T. This is really
essential to understand the following explanations.

CS W186, Fall 2019, Course Notes 1 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins
2 Simple Nested Loop Join

Let’s start with the simplest strategy possible. Let’s say we have a buffer of B pages, and let’s say
that we wish to join two tables, R and S, on the join condition θ. Starting with the most näıve
strategy, we can take each record in R, search for all its matches in S, and then write each match
to disk.

This is called simple nested loop join (SNLJ). You can think of it as two nested for loops:

for each record ri in R:
for each record sj in S:

if θ(ri,sj):
write <ri, sj> to disk

This would be a great thing to do, but the theme of the class is really centered around optimization
and minimizing I/Os. For that, this is a pretty poor scheme, because we take each record in R and
read in every single page in S searching for a match. The I/O cost of this would then be [R]+ |R|[S],
where [R] is the number of pages in R and |R| is the number of records in R...and while we might
be able to optimize things a slight amount by switching the order of R and S in the for loop, this
really isn’t a very good strategy.

Note: SNLJ does not incur |R| I/Os to read every record in R. It will cost [R] I/Os because
its really doing something more like “for each page pr in R: for each record r in pr: for each page
ps in S: for each record s in ps: join” since we can’t read less than a page at a time.

CS W186, Fall 2019, Course Notes 2 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins
3 Page Nested Loop Join

It’s clear that we don’t want to read in every single page of S for each record of R, so what can we
do better? What if we read in every single page in S for every single page of R instead? That is,
for a page of R, take all the records and match them against each record in S, and do this for every
page of R.

That’s called page nested loop join (PNLJ). Here’s the pseudocode for it:

for each page pr in R:
for each page ps in S:

for each record ri in pr:
for each record sj in ps:

if θ(ri, sj):
yield <ri, sj>

The I/O cost of this is somewhat better. It’s [R] + [R][S] – this can be optimized by keeping the
smaller relation between R and S as the outer one.

CS W186, Fall 2019, Course Notes 3 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins
4 Block Nested Loop Join

Page Nested Loop Join is a lot better! The only problem is that we’re still not fully utilizing our
buffer as powerfully as we can. We have B buffer pages, but our algorithm only uses 3 – one for R,
one for S, and one for the output buffer. Remember that the fewer times we read in S, the better
– so if we can reserve B-2 pages for R instead and match S against every record in each ”chunk”,
we could cut down our I/O cost drastically!

This is called Chunk Nested Loop Join (or Block Nested Loop Join). The key idea here is
that we want to utilize our buffer to help us reduce the I/O cost, and so we can reserve as many
pages as possible for a chunk of R – because we only read in each page of S once per chunk, larger
chunks imply fewer I/Os. For each chunk of R, match all the records in S against all the records in
the chunk.

for each block of B−2 pages Br in R:
for each page ps in S:

for each record ri in Br:
for each record sj in ps:

if θ(ri,sj):
yield <ri, sj>

Then, the I/O cost of this can be written as [R] + d [R]
B−2e[S].

This is a lot better! Now, we’re taking advantage of our B buffer pages to reduce the number
of times we have to read in S.

CS W186, Fall 2019, Course Notes 4 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins
5 Index Nested Loop Join

There are times, however, when Block Nested Loop Join isn’t the best thing to do. Sometimes, if
we have an index on S that is on the appropriate field (i.e. the field we are joining on), it can be
very fast to look up matches of ri in S. This is called index nested loop join, and the pseudocode
goes like this:

for each record ri in R:
for each record sj in S where θ(ri,sj)==true:

yield <r i, sj>

The I/O cost is [R] + |R|∗(cost to look up matching records in S).

The cost to look up matching records in S will differ based on the type of index. If it is a B+
tree, we will search starting at the root and count how many I/Os it will take to get to a corre-
sponding record. See the Clustering and Counting I/O’s sections of the B+ tree course notes.

CS W186, Fall 2019, Course Notes 5 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins
6 Hash Join

Notice that in this entire sequence, we’re really trying to look for matching records. Hash tables
are really nice for looking up matches, though; even if we don’t have an index, we can construct
a hash table that is B-2 pages2 big on the records of R, fit it into memory, and then read in each
record of S and look it up in R’s hash table to see if we can find any matches on it. This is called
Naive Hash Join. Its cost is [R] + [S] I/Os.

That’s actually the best one we’ve done yet. It’s efficient, cheap, and simple. There’s a prob-
lem with this, however; this relies on R being able to fit entirely into memory (specifically, having
R being ≤ B − 2 pages big). And that’s often just not going to be possible.

To fix this, we repeatedly hash R and S into B-1 buffers so that we can get partitions that are
≤ B − 2 pages big, enabling us to fit them into memory and perform a Naive Hash Join. More
specifically, consider each pair of corresponding partitions Ri and Si (i.e. partition i of R and parti-
tion i of S). If Ri and Si are both > B-2 pages big, hash both partitions into smaller ones. Else, if
either Ri or Si ≤ B-2 pages, stop partitioning and load the smaller partition into memory to build
an in-memory hash table and perform a Naive Hash Join with the larger partition in the pair.

This procedure is called Grace Hash Join, and the I/O cost of this is: the cost of hashing
plus the cost of Naive Hash Join on the subsections. The cost of hashing can change based on how
many times we need to repeatedly hash on how many partitions. The cost of hashing a partition P

includes the I/O’s we need to read all the pages in P and the I/O’s we need to write all the resulting
partitions after hashing partition P.

The Naive Hash Join portion cost per partition pair is the cost of reading in each page in both
partitions after you have finished.

Grace Hash is great, but it’s really sensitive to key skew, so you want to be careful when us-
ing this algorithm. Key skew is when we try to hash but many of the keys go into the same bucket.
Key skew happens when many of the records have the same key. For example, if we’re hashing on
the column which only has ”yes” as values, then we can keep hashing but they will all end up in
the same bucket no matter which hash function we use.

2We need one page for the current page in S and one page to store output records. The other B-2 pages can be
used for the hash table.

CS W186, Fall 2019, Course Notes 6 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins
7 Sort-Merge Join

There’s also times when it helps for us to sort R and S first, especially if we want our joined table
to be sorted on some specific column. In those cases, what we do is first sort R and S. Then...

(1) we begin at the start of R and S and advance one or the other until we get to a match (if
ri < sj , advance R; else if ri > sj , advance S – the idea is to advance the lesser of the two
until we get to a match).

(2) Now, let’s assume we’ve gotten to a match. Let’s say this pair is ri, sj . We mark this spot
in S as marked(S) and check each subsequent record in S (sj ,sj+1,sj+2, etc) until we find
something that is not a match (i.e. read in all records in S that match to ri).

(3) Now, go to the next record in R and go back to the marked spot in S and begin again at step
1 (except instead of beginning at the start of R and the start of S, do it at the indices we just
indicated) – the idea is that because R and S are sorted, any match for any future record of
R cannot be before the marked spot in S, because this record ri+1 ≥ ri – if a match for ri did
not exist before marked(S), a match for ri+1 cannot possibly be before marked(S) either!
So we scroll from the marked spot in S until we find a match for ri+1.

This is called Sort-Merge Join and the average I/O cost is: cost to sort R + cost to sort S +
([R] + [S]) (though it is important to note that this is not the worst case!).3

3(in the worst case, if each record of R matches every record of S, we could see the last term could be |R| ∗ [S].
That generally doesn’t happen, though).

CS W186, Fall 2019, Course Notes 7 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins

Let’s take a look at an example. Let the table on the left be R and the table on the right be S.

We will advance the pointer (the red arrow) on S because 28 < 31 until S gets to sid of 31.
Then we will mark this record (the black arrow). In addition, we will output this match.

Then we will advance the pointer on S again and we get another match and output it.

CS W186, Fall 2019, Course Notes 8 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins

We advance the pointer on S again, but we do not get a match. We then reset S to where we
marked (the black arrow) and then advance R. When we advance R, we get another match so we
output it.

We then advance S, we get another match so we output it.

CS W186, Fall 2019, Course Notes 9 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins
do {

if (!mark) {

while (r < s) { advance r }

while (r > s) { advance s }

// mark start of block of S

mark = s

}

if (r == s) {

result = <r, s>

advance s

yield result

}

else {

reset s to mark

advance r

mark = NULL

}

}

7.1 An Important Refinement

An important refinement: You can combine the last sorting phase with the merging phase, provided
you have enough room in memory to allocate a page for each run of [R] and for each run of [S].
The final merge pass is where you allocate a page for each run of R and each run of S. In this
process, you save 2 ∗ ([R] + [S]) I/Os

To perform the optimization, we must

(1) sort [R] and [S] (individually, using the full buffer pool for each of them) until you have
them both ”almost-sorted”; that is, for each table T in {R, S}, keep merging runs of T until
you get to the penultimate step, where one more sorting pass would result in a sorted table
T.

(2) See how many runs of [R] and how many runs of [S] are left; sum them up. Allocate one
page in memory for each run. If you have enough input buffers left to accommodate this (i.e.
if runs(R) + runs(S) ≤ B − 1), then you may use the optimization and you could then save
2 ∗ ([R] + [S]) I/Os.

(3) If you could not do the optimization described in the previous step, it means that runs(R)
+ runs(S) ≥ B. In the ideal case, the optimization allows us to avoid doing an extra read of
both R and S, but this is not possible here, as we don’t have an available buffer for each run
of R and S.

CS W186, Fall 2019, Course Notes 10 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Iterators and Joins

However, we’re not out of options yet! If we can’t avoid extra reads for both R and S, per-
haps we can avoid an extra read for at least one of them. Because we are trying to minimize
I/Os, we would like to avoid the extra read for the larger table R. Could it help us to maybe
completely sort just the smaller table S and use that in an optimization?

It turns out that we can! If we completely sort S, there is, by definition, now only one
sorted run for that table, and this would mean that we only need to allocate one page in
our buffer for it. So, if runs(R) + 1 ≤ B − 1, then we can allocate one buffer page for S
and for each run of R. Then, we can perform the SMJ optimization. Here, we have avoided
the final sorting pass for R by combining it with the join phase. So we have saved 2∗[R] pages.

Sometimes, though, even this is not enough – if runs(R) = B-1, then we don’t have a spare
buffer page for S. In this case, we’d like to still reduce as many I/Os as possible, so maybe
perform the procedure described in the previous paragraph, but for the smaller table. That
is, if runs(S) + 1 ≤ B − 1, then sort R, reducing the number of sorted runs for it to 1 by
definition, and then allocate one buffer page for R and one for each run of S. Then, perform
the optimization – this will enable us to avoid the final sorting pass for S by combining it
with the join phase, saving us 2 ∗ [S] I/Os.

If none of those conditions are met, though, we just won’t be able to optimize sort-merge
join. And that’s alright. Sometimes, we just have to bite the bullet and accept that we can’t
always cut corners.

CS W186, Fall 2019, Course Notes 11 Jenny Huang, Lakshya Jain

