CS W186 Databases - Fall 2019 Guerilla Section 3: Joins and Query Optimization

Sunday, October 20, 2019

Joins

We will be joining two tables: a table of students, and a table of assignment submissions; and we will be joining by the student ID:

```
CREATE TABLE Students (
    student_id INTEGER PRIMARY KEY,
    ...
);
CREATE TABLE AssignmentSubmissions(
    assignment_number INTEGER,
    student_id INTEGER REFERENCES Students(student_id),
    ...
);
SELECT *
FROM Students, AssignmentSubmissions
```

WHERE Students.student_id = AssignmentSubmissions.student_id;

We also have:

- Students has [S] = 20 pages, with $p_S = 200$ records per page
- AssignmentSubmissions has [A] = 40 pages, with $p_A = 250$ records per page

Questions:

- 1. What is the I/O cost of a simple nested loop join for Students × AssignmentSubmissions?
- 2. What is the I/O cost of a simple nested loop join for AssignmentSubmissions & Students?

- 3. What is the I/O cost of a block nested loop join for Students \bowtie AssignmentSubmissions? Assume our buffer size is B = 12 pages.
- 4. What about block nested loop join for AssignmentSubmissions \rtimes Students? Assume our buffer size is B = 12 pages.
- 5. What is the I/O cost of an Index-Nested Loop Join for Students ⋈ AssignmentSubmissions? Assume we have a clustered alternative 2 index on AssignmentSubmissions.student_id, in the form of a height 2 B+ tree. Assume that index node and leaf pages are not cached; all hits are on the same leaf page; and all hits are also on the same data page.
- 6. Now assume we have a unclustered alternative 2 index on AssignmentSubmissions.student_id, in the form of a height 2 B+ tree. Assume that index node and leaf pages are not cached; and all hits are on the same leaf page. What is the I/O cost of an Index-Nested Loop Join for Students ⋈ AssignmentSubmissions?
- 7. What is the cost of an unoptimized sort-merge join for Students \rtimes AssignmentSubmissions? Assume we have B = 12 buffer pages.
- 8. What is the cost of an **optimized** sort-merge join for Students \bowtie AssignmentSubmissions? Assume we have B = 12 buffer pages.
- 9. In the previous question, we had a buffer of B = 12 pages. If we shrank B enough, the answer we got might change.

How small can the buffer B be without changing the I/O cost answer we got?

10. What is the I/O cost of Grace Hash Join on these tables? Assume we have a buffer of B = 6 pages.

Query Optimization 1

(Modified from Fall 2017)

For the following question, assume the following:

- Column values are uniformly distributed and independent from one another
- Use System R defaults (1/10) when selectivity estimation is not possible
- Primary key IDs are sequential, starting from 1
- Our optimizer does not consider interesting orders

We have the following schema:

Table Schema	Records	Pages	Indices
CREATE TABLE Student (sid INTEGER PRIMARY KEY, name VARCHAR(32), major VARCHAR(64)), semesters_completed INTEGER)	25,000	500	 Index 1: Clustered(major). There are 130 unique majors Index 2: Unclustered(semesters completed). There are 11 unique values in the range [0, 10]
CREATE TABLE Application (sid INTEGER REFERENCES Student, cid INTEGER REFERENCES Company, status TEXT, (sid, cid) PRIMARY KEY)	100,000	10,000	 Index 3: Clustered(cid, sid). Given: status has 10 unique values
CREATE TABLE Company (cid INTEGER PRIMARY KEY, open_roles INTEGER))	500	100	• Index 4: Unclustered(cid) • Index 5: Clustered(open roles). There are 500 unique values in the range [1, 500]

Consider the following query:

```
SELECT Student.name, Company.open_roles, Application.referral
FROM Student, Application, Company
WHERE Student.sid = Application.sid -- (Selectivity 1)
AND Application.cid = Company.cid -- (Selectivity 2)
AND Student.semesters_completed > 6 -- (Selectivity 3)
AND (Student.major='EECS' OR Company.open_roles <= 50) -- (Selectivity 4)
AND NOT Application.status = 'limbo' -- (Selectivity 5)
ORDER BY Company.open_roles;</pre>
```

- 1. For the following questions, calculate the selectivity of each of the labeled Selectivities above.
 - (a) Selectivity 1
 - (b) Selectivity 2
 - (c) Selectivity 3
 - (d) Selectivity 4
 - (e) Selectivity 5
- 2. For each predicate, which is the first pass of Selinger's algorithm that uses its selectivity to estimate output size? (Pass 1, 2 or 3?)
 - (a) Selectivity 1
 - (b) Selectivity 2
 - (c) Selectivity 3
 - (d) Selectivity 4
 - (e) Selectivity 5
- 3. Mark the choices for all access plans that would be considered in pass 2 of the Selinger algorithm.
 - (a) Student \bowtie Application (800 IOs)
 - (b) Application \bowtie Student (750 IOs)
 - (c) Student \bowtie Company (470 IOs)
 - (d) Company \bowtie Student (525 IOs)
 - (e) Application \bowtie Company (600 IOs)
 - (f) Company \bowtie Application (575 IOs)
- 4. Which choices from the previous question for all access plans would be chosen at the end of pass 2 of the Selinger algorithm?

- 5. Which plans that would be considered in pass 3?
 - (a) Company \bowtie (Application \bowtie Student) (175,000 IOs)
 - (b) Company \bowtie (Student \bowtie Application) (150,000 IOs)
 - (c) Application \bowtie (Company \bowtie Student) (155,000 IOs)
 - (d) Application \bowtie (Company \bowtie Student) (160,000 IOs)
 - (e) Student \bowtie (Company \bowtie Application) (215,000 IOs)
 - (f) (Company \bowtie Application) \bowtie Student (180,000 IOs)
 - (g) (Application \bowtie Company) \bowtie Student (200,000 IOs)
 - (h) (Application \bowtie Student) \bowtie Company (194,000 IOs)
 - (i) (Student \bowtie Application) \bowtie Company (195,000 IOs)
 - (j) (Student \bowtie Company) \bowtie Application (165,000 IOs)
- 6. Which choice from the previous question for all plans would be chosen at the end of pass 3?

Query Optimization 2

(Modified from Spring 2016)

- 1. True or False
 - When evaluating potential query plans, the set of left deep join plans are always guaranteed to contain the best plan.
 - As a heuristic, the System R optimizer avoids cross-products if possible.
 - A plan can result in an interesting order if it involves a sort-merge join.
 - The System R algorithm is greedy because for each pass, it only keeps the lowest cost plan for each combination of tables.
- 2. For the following parts assume the following:
 - The System R assumptions about uniformity and independence from lecture hold
 - Primary key IDs are sequential, starting from 1

We have the following schema:

CREATE TABLE flight (fid INTEGER PRIMARY KEY, from_id INTEGER REFERENCES City, to_id INTEGER REFERENCES City, aid INTEGER REFERENCES Airline)	NTuples: 100K, NPages: 50 Index: (I) unclustered B+-tree on aid. 20 leaf pages. (II) clustered B+-tree on (from_cid, fid). 10 leaf pages.
CREATE TABLE City (cid INTEGER PRIMARY KEY, name VARCHAR(16), state VARCHAR(16), population INTEGER)	NTuples: 50K, NPages: 20 Index: (III) clustered B+-tree on population. 10 leaf pages. (IV) unclustered index on cid. 5 leaf pages. Statistics: state in [1, 50], population in [10 ⁶ , 8*10 ⁶]
CREATE TABLE Airline (aid INTEGER PRIMARY KEY, hq_cid INTEGER REFERENCES City, name VARCHAR(16))	NTuples: 5K, NPages: 2

Consider the following query:

SELECT *
FROM Flight F, City C, Airline A
WHERE F.to_cid = C.cid
AND F.aid = A.aid
AND F.aid >= 2500
AND C.population > 5e6
AND C.state = 'California';

Considering each predicate in the WHERE clause separately, what is the reduction factor for each?

```
(a) R1: C.state='California'
```

(b) R2: F.to_cid = C.cid

(c) R3: F.aid >= 2500

(d) R4: C.population > 5 * 10⁶

3. For each blank in the System R DP table for Pass 1. Assume this is before the optimizer discards any rows it isn't interested in keeping and note that some blanks may be N/A. Additionally, assume it takes 2 I/Os to reach the leaf nodes.

Table(s)	Plans	Interesting Orders from Plan (N/A if none)	Cost (I/Os)
Flight	Index (I)		
City	Filescan		
City	Index (III)		

- 4. After Pass 2, which of the following plans could be in the DP table?
 - (a) City [Index(III)] JOIN Airline [File scan]
 - (b) City [Index (III)] JOIN Flight [Index (I)]
 - (c) Flight [Index (II)] JOIN City [Index (III)]
- 5. Suppose we want to optimize for queries similar to the query above in part 2, which of the following suggestions could reduce I/O cost?
 - (a) Change Index (III) to be unclustered
 - (b) Store City as a sorted file on population