CS W186 Introduction to Database Systems Fall 2019 Josh Hug

1 ER Diagrams

We want to store sports teams and their players in our database. Draw an ER diagram corresponding to data given below:

- Every Team in our database will have a unique team_name and a stadium where they play their games.
- Each Coach has a name.
- Each Player will have a player_id, name and their average score.
- Our database will contain who Plays_For which team and also the "position" that the player plays in. We also need to store who Captains a team, and who Coaches a team.
- Every Team needs players, and needs exactly one captain.
- Each Player can be on at most one team, but may currently be a free agent and not on any team.
- Each team needs coaches and may have many.
- A Coach is uniquely identified by which team they coach.

2 Functional Dependencies

- When there's a lot of symbols floating around, it's best to keep track of the "type" of the various symbols and expressions. Consider a set of functional dependencies F = {X -> Y, Y -> Z}. For each of the following symbols or expressions, indicate whether it is (a) an attribute, (b) a set of attributes, (c), a set of sets of attributes, (d) a functional dependency, (e) a set of functional dependencies, or (f) none of the above.
 - (a) X
 - (b) XY
 - (c) X -> Y
 - (d) F
 - (e) F+
 - (f) X+
 - (g) Armstrong's reflexivity axiom
- Consider a relation R(x, y, z) and the list of functional dependencies X -> Y, XY -> YZ, and Y -> X where X = {x}, Y = {y}, and Z = {z}. For each of the following relations, indicate which functional dependencies it might satisfy.

v	v	-
x	У	2
1	2	0
1	2	z 0 1
1 2	y 2 2 3 3	0
2	3	0
x	У	z
1	y 2 3 3	z 1 1 0
1 1 2	3	1
2	3	0
x	У	z
x 1 2	у 3 3	z 1 0
2	3	0
		_
x	У	z
x 1	у З	z 1

- 3. Consider the set F = {A -> B, AB -> AC, BC -> BD, DA -> C} of functional dependencies. Compute the following attribute closures.
 - (a) A+
 - (b) B+, C+, D+
 - (c) AB+, AC+, AD+
 - (d) BC+
 - (e) BD+
 - (f) CD+
 - (g) BCD+

- 4. Consider again the set F of functional dependencies from Question 3. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.
 - (a) A
 - (b) B, C, D
 - (c) AB, AC, AD
 - (d) BC
 - (e) BD
 - (f) CD
 - (g) BCD
- 3 Normal Forms
 - 1. Decompose R = ABCDEFG into BCNF, given the functional dependency set: F = AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F.
 - 2. Does the above decomposition preserve dependencies? Why/why not?