
CS 186
Spring 2021 Distributed Transactions
1 Introduction

For much of this semester, we assumed that transactions ran on databases where all of the data
existed on one node (machine). This is often the case for databases with lighter workloads, but
as demand increases, databases scale out to improve performance by using a Shared Nothing
architecture. Each node receives a partition of the data set that is distributed based on a range
or hash key and is connected to other nodes through a network. Distributed Transactions are
needed for executing queries in distributed databases as a transaction may need to perform reads
and writes on data that exist on different nodes.

2 Distributed Locking

Since every node contains data that is independent of any other node’s data, every node can main-
tain its own local lock table. Coarser grained locks for entire tables or the database can either
be given to all nodes containing a partition or be centralized at a predetermined node. This design
makes locking simple as 2 phase locking is performed at every node using local locks in order to
guarantee serializability between different transactions.

When dealing with locking, deadlock is always a possibility. To determine whether deadlock has
occurred in a distributed database, the waits-for graphs for each node must be unioned to find
cycles as transactions can be blocked by other transactions executing on different nodes.

3 Two Phase Commit (2 PC)

In a distributed database, consensus is the idea that all nodes agree on one course of
action. Consensus is implemented through Two Phase Commit and enforces the property that all

CS 186, Spring 2021, Course Notes 1



CS 186
Spring 2021 Distributed Transactions
nodes maintain the same view of the data. It provides this guarantee by ensuring that a distributed
transaction either commits or aborts on all nodes involved. If consensus is not enforced, some nodes
may commit the transaction while others abort, causing nodes to have views of data at different
points in time.

Every distributed transaction is assigned a coordinator node that is responsible for maintaining
consensus among all participant nodes involved in the transaction. When the transaction is ready
to commit, the coordinator initiates Two Phase Commit.

2 PC’s first phase is the preparation phase:

1. Coordinator sends prepare message to participants to tell participants to either prepare for
commit or abort

2. Participants generate a prepare or abort record and flush record to disk

3. Participants send yes vote to coordinator if prepare record is flushed or no vote if abort record
is flushed

4. Coordinator generates a commit record if it receives unanimous yes votes or an
abort record otherwise, and flushes the record to disk

2 PC’s second phase is the commit/abort phase:

1. Coordinator broadcasts (sends message to every participant) the result of the commit/abort
vote based on flushed record

2. Participants generate a commit or abort record based on the received vote message and flush
record to disk

3. Participants send an ACK (acknowledgement) message to the coordinator

4. Coordinator generates an end record once all ACKs are received and flushes the record some-
time in the future

CS 186, Spring 2021, Course Notes 2



CS 186
Spring 2021 Distributed Transactions

4 Distributed Recovery

It is also important that the Two-Phase Commit protocol maintains consensus among all nodes
even in the presence of node failures. In other words – suppose a node were to fail at an
arbitrary point in the protocol. When this node comes back online, it should still end up making
the same decision as all the other nodes in the database.

How do we accomplish this? Luckily, the 2PC protocol tells us to log the prepare, commit, and
abort records. This means that between looking at our own log, and talking to the coordinator node,
we will have all the information needed to accomplish recovery correctly (for most failure scenarios).

An important assumption we will make for now is that failures are temporary and that all nodes
eventually recover. Many of 2PC’s invariants break down without this assumption, but that is
beyond the scope of this class.

Let’s look at the specifics. We will analyze what happens for a failure at each possible point
in the protocol, for either the participant or the coordinator.

Note that in some cases, we can determine what recovery decisions to make just by looking at
our own log. In other cases, however, we might also have to talk to the coordinator; we wrap this
logic in a separate process called the recovery process.

The possible failures, in chronological order:

• Participant is recovering, and sees no prepare record.

CS 186, Spring 2021, Course Notes 3



CS 186
Spring 2021 Distributed Transactions

– This probably means that the participant has not even started 2PC yet – and if it has, it
hasn’t yet sent out any vote messages (since votes are sent after flushing the log record
to disk).

– Since it has not sent out any vote messages, it aborts the transaction locally. No
messages need to be sent out (the participant has no knowledge of the coordinator
ID).

• Participant is recovering, and sees a prepare record.

– This situation is trickier. Looking at the diagram above, a lot of things could have
happened between logging the prepare record and crashing – for instance, we don’t even
know if we managed to send out our YES vote!

– Specifically, we don’t know whether or not the coordinator made a commit decision.
So the participant node’s recovery process must ask the coordinator whether a commit
happened (”Did the coordinator log a commit?”). The coordinator can be determined
from the coordinator ID stored in the prepare log record.

– The coordinator will respond with the commit/abort decision, and the participant
resumes 2PC from phase 2.

• Coordinator is recovering, and sees no commit record.

– The coordinator crashed at some point before receiving the votes of all participants and
logging a commit decision.

– The coordinator will abort the transaction locally. No messages need to be sent out
(the coordinator has no knowledge of the participant IDs involved in the transaction).

– If the coordinator receives an inquiry from a participant about the status of the trans-
action, respond that the transaction aborted.

• Coordinator is recovering, and sees a commit record.

– We’d like to commit, but we don’t know if we managed to tell the participants.

– So, rerun phase 2 (send out commit messages to participants). The participants can
be determined from the participant IDs stored in the commit log record.

• Participant is recovering, and sees a commit record.

– We did all our work for this commit, but the coordinator might still be waiting for our
ACK, so send ACK to coordinator. (The coordinator can be determined from the
coordinator ID stored in the commit log record.)

• Coordinator is recovering, and sees an end record.

– This means that everybody already finished the transaction and there is no recovery to
do.

CS 186, Spring 2021, Course Notes 4



CS 186
Spring 2021 Distributed Transactions
The list above only discusses commit records. What about abort records?

We could handle them the same way as commit records (e.g. tell participants, send acks). This
works fine, but is it really necessary? What if nodes just didn’t bother recovering aborted transac-
tions?

It turns out this works if everybody understands that no log records means abort. This
optimization is called presumed abort, and it means that abort records never have to be
flushed – not in phase 1 or phase 2, not by the participant or the coordinator.

The protocol with the presumed abort optimization looks like this:

And this is how we would recover from failures in aborted transactions, with and without presumed
abort:

• Participant is recovering, and sees no phase 1 abort record.

– Without presumed abort: This probably means that the participant has not even started
2PC yet – and if it has, it hasn’t yet sent out any vote messages (since votes are sent
after flushing the log record to disk).

– With presumed abort: It is possible that the participant decided to abort and sent a
”no” vote to the coordinator before the crash.

– With or without presumed abort, the participant aborts the transaction locally. No
messages need to be sent out (the participant has no knowledge of the coordinator
ID).

• Participant is recovering, and sees a phase 1 abort record.

CS 186, Spring 2021, Course Notes 5



CS 186
Spring 2021 Distributed Transactions

– Without presumed abort: Abort the transaction locally and send “no” vote to the
coordinator. (The coordinator can be determined from the coordinator ID stored in the
abort log record.)

– With presumed abort: Abort the transaction locally. No messages need to be sent out!
(The coordinator will timeout after not hearing from the participant and presume abort.)

• Coordinator is recovering, and sees no abort record.

– Without presumed abort: The coordinator crashed at some point before reaching a
commit/abort decision.

– With presumed abort: It is possible that the coordinator decided to abort and sent out
abort messages to the participants before the crash.

– With or without presumed abort, the coordinator will abort the transaction locally. No
messages need to be sent out (the coordinator has no knowledge of the participant IDs
involved in the transaction).

– If the coordinator receives an inquiry from a participant about the status of the trans-
action, respond that the transaction aborted.

• Coordinator is recovering, and sees an abort record.

– Without presumed abort: Rerun phase 2 (sending out abort messages to participants).
The participants can be determined from the participant IDs in the abort log record.

– With presumed abort: Abort the transaction locally. No messages need to be sent out!
(Participants who don’t know the decision will ask the coordinator later.)

• Participant is recovering, and sees a phase 2 abort record.1

– Without presumed abort: Abort the transaction locally, and send back ACK to coordi-
nator. (The coordinator can be determined from the coordinator ID stored in the abort
log record.)

– With presumed abort: Abort the transaction locally. No messages need to be sent out!
(ACKs only need to be sent back on commit.)

To wrap everything up, here are some subtleties that you should be explicitly be aware of:

• The 2PC recovery decision is commit if and only if the coordinator has logged a
commit record.

1In reality, there is no difference between a phase 1 and phase 2 abort record. Therefore, for the without
presumed abort case, a participant can simply respond with NO to the coordinator upon seeing an abort record. The
coordinator will then treat that message as either a phase 1 vote or a phase 2 ACK accordingly.

CS 186, Spring 2021, Course Notes 6



CS 186
Spring 2021 Distributed Transactions

• Since 2PC requires unanimous agreement, it will only make progress if all nodes are alive.
This is true for the recovery protocol as well – for recovery to finish, all failed nodes must
eventually come back alive. If the coordinator believes a participant is dead, it can respawn
the participant on a new node based on the log of the original participant, and ignore the
original participant if it does come back online. However, 2PC struggles to handle scenarios
where the coordinator is dead. For example, consider a scenario where all participants vote
yes in Phase 1, but the coordinator crashes before sending out a commit decision. The
participants will keep pinging the dead coordinator for the status of the transaction, and the
system is blocked from making progress. Protocols that continue operating despite extended
failures are out of the scope of this course, but a good example is “Paxos Commit”.

5 Practice Questions
1. Suppose that there are some transactions happening concurrently. If no two concurrent

transactions ever operate on rows that are being stored in the same node, can a deadlock still
happen?

2. Suppose a participant receives a prepare message for a transaction. Assuming the participant
node remains online and does not fail, why might it decide to log an abort record and vote
no?

3. Suppose a participant receives a prepare message for a transaction and replies VOTE-YES.
Suppose that they were running a wound-wait deadlock avoidance policy, and a transaction
comes in with higher priority. Will the new transaction abort the prepared transaction?

4. True or false - if we are recovering and see a PREPARE record, it means we must have sent out
a YES vote.

5. How many messages and log flushes does the presumed abort optimization skip if the trans-
action commits? What about if it aborts due to the participants aborting?

CS 186, Spring 2021, Course Notes 7



CS 186
Spring 2021 Distributed Transactions
6 Solutions

1. You may be inclined to say no, since a transaction does not seem like it will ever wait on the
locks of another transaction in this scenario. But remember that in addition to each node
maintaining its own local lock table, coarser grained locks, such as locks for tables or
the entire database, can still be shared between nodes, and the transactions may still
conflict via these coarser locks.

2. The participant may decide to abort the transaction and vote no to avoid deadlock. For
example, if we are using deadlock detection and we discover that the union of the waits-for
graphs for each node contains a cycle the transaction is involved in, we may decide to abort
the transaction. If we are using a deadlock avoidance policy, we will abort the transaction if
acquiring the locks necessary to perform the transaction’s operations would require us to wait
on a lower priority transaction (for wait-die) or higher priority transaction (for wound-wait).

3. No - transactions that are prepared must be ready to commit if the coordinator tells them
to, so they cannot be aborted by anyone other than the coordinator.

4. False! We could have crashed between logging PREPARE and sending VOTE-YES.

5. If the transaction commits, no messages or log flushes are skipped - the messages sent and
records logged are the same as the protocol without presumed abort.

If the participants abort, they do not flush any log records (skipping up to two flushes) and
only have to send one message (they don’t have to send the ACK). The coordinator also does
not have to flush any log records (skipping one flush), but does not skip any messages (it still
sends the messages it would without presumed abort).

CS 186, Spring 2021, Course Notes 8


