
CS 186
Spring 2021 Transactions and Concurrency I
1 Introduction
In reality, we usually don’t have just one person accessing a database at a time. Many users can
make requests to a database at a time which can cause concurrency issues. What happens when
one user writes and then another user reads from the same resource? What if both users try to
write to the same resource? There are several problems we can run into when several users are
using the database at the same time if we’re not careful:

• Inconsistent Reads: A user reads only part of what was updated.

– User 1 updates Table 1 and then updates Table 2.

– User 2 reads Table 2 (which User 1 has not updated yet) and then Table 1 (which User
1 already updated) so it reads the database in an intermediate state.

• Lost Update: Two users try to update the same record so one of the updates gets lost. For
example:

– User 1 updates a toy’s price to be price * 2.

– User 2 updates a toy’s price to be price + 5, blowing away User 1’s update.

• Dirty Reads: One user reads an update that was never committed.

– User 1 updates a toy’s price but this gets aborted.

– User 2 reads the update before it was rolled back.

CS 186, Spring 2021, Course Notes 1 Jenny Huang, Lakshya Jain



CS 186
Spring 2021 Transactions and Concurrency I
2 Transactions

Our solution to those problems is to define a set of rules and guarantees about operations. We will
do this by using transactions. A transaction1 is a sequence of multiple actions that should be
executed as a single, logical, atomic unit. Transactions guarantee the ACID properties to avoid
the problems discussed above:

• Atomicity: A transaction ends in two ways: it either commits or aborts. Atomicity means
that either all actions in the Xact happen, or none happen.

• Consistency: If the DB starts out consistent, it ends up consistent at the end of the Xact.

• Isolation: Execution of each Xact is isolated from that of others. In reality, the DBMS will
interleave actions of many Xacts and not execute each in order of one after the other. The
DBMS will ensure that each Xact executes as if it ran by itself.

• Durabilty: If a Xact commits, its effects persist. The effects of a committed Xact must
survive failures.

3 Concurrency Control

In this note we will discuss how to enforce the isolation property of transactions (we will learn
how the other properties are enforced in the note about recovery). To do this, we will analyze
transaction schedules which show the order that operations are executed in. These operations
include: Begin, Read, Write, Commit and Abort.

The easiest way to ensure isolation is to run all the operations of one transaction to comple-
tion before beginning the operations of next transaction. This is called a serial schedule. For
example, the following schedule is a serial schedule because T1’s operations run completely before
T2 runs.

1We sometimes shorten transaction to Xact.

CS 186, Spring 2021, Course Notes 2 Jenny Huang, Lakshya Jain



CS 186
Spring 2021 Transactions and Concurrency I

The problem with these schedules, however, is that it is not efficient to wait for an entire transaction
to finish before starting another one. Ideally, we want to get the same results as a serial schedule
(because we know serial schedules are correct) while also getting the performance benefits of running
schedules simultaneously. Basically, we are looking for a schedule that is equivalent to a serial
schedule. For schedules to be equivalent they must satisfy the following three rules:

1. They involve the same transactions

2. Operations are ordered the same way within the individual transactions

3. They each leave the database in the same state

If we find a schedule whose results are equivalent to a serial schedule, we call the schedule serial-
izable. For example, the following schedule is serializable because it is equivalent to the schedule
above. You can work through the following schedule and see that resources A and B end up with
the same value as the serial schedule above.

CS 186, Spring 2021, Course Notes 3 Jenny Huang, Lakshya Jain



CS 186
Spring 2021 Transactions and Concurrency I

Now the question is: how do we ensure that two schedules leave the database in the same final
state without running through the entire schedule to see what the result is? We can do this by
looking for conflicting operations. For two operations to conflict they must satisfy the following
three rules:

1. The operations are from different transactions

2. Both operations operate on the same resource

3. At least one operation is a write

We then check if the two schedules order every pair of conflicting operations in the same way. If
they do, we know for sure that the database will end up in the same final state. When two schedules
order their conflicting operations in the same way the schedules are said to be conflict equivalent,
which is a stronger condition than being equivalent.

Now that we have a way of ensuring that two schedules leave the database in the same final
state, we can check if a schedule is conflict equivalent to a serial schedule without running through
the entire schedule. We call a schedule that is conflict equivalent to some serial schedule conflict
serializable. Note: if a schedule S is conflict serializable then it implies that is serializable.2.

3.1 Conflict Dependency Graph

Now we have a way of checking if a schedule is serializable! We can check if the schedule is conflict
equivalent to some serial schedule because conflict serializable implies serializable. We can check

2Not all serializable schedules are conflict serializable

CS 186, Spring 2021, Course Notes 4 Jenny Huang, Lakshya Jain



CS 186
Spring 2021 Transactions and Concurrency I
conflict serializability by building a dependency graph. Dependency graphs have the following
structure:

• One node per Xact

• Edge from Ti to Tj if:

– an operation Oi of Ti conflicts with an operation Oj of Tj

– Oi appears earlier in the schedule than Oj

A schedule is conflict serializable if and only if its dependency graph is acyclic. So all we have to
do is check if the graph is acyclic to know for sure that it is serializable!

CS 186, Spring 2021, Course Notes 5 Jenny Huang, Lakshya Jain



CS 186
Spring 2021 Transactions and Concurrency I
Let’s take a look at two examples:

• The following schedule is conflict serializable and the conflict graph is acyclic. There are two
conflicting operations:

– T1 reads A and then T2 writes to A. Because of this, there will be an edge from T1 to
T2.

– T1 writes to A and then T2 reads from A. Since there already is an edge from T1 to
T2, we don’t have to add the edge again.

• The following schedule is not conflict serializable and the conflict graph is not acyclic. Some
conflicting operations:

– T1 reads A and then T2 writes to A. Because of this, there will be an edge from T1 to
T2.

– T2 writes to B and then T1 reads B. Because of this, there will be an edge from T2 to
T1.

CS 186, Spring 2021, Course Notes 6 Jenny Huang, Lakshya Jain



CS 186
Spring 2021 Transactions and Concurrency I
4 Conclusion
In this note, we removed the naive assumption we have had up until this point of only allowing
one user to access a database at a time. We discussed the potential anomalies that can arise if our
database does not guarantee the ACID properties. We learned how transactions are a powerful
mechanism used to encapsulate a sequence of actions that should be executed as a single, logical,
atomic unit. In the next note, we will discuss how to actually enforce conflict serializability for our
transaction schedules.

CS 186, Spring 2021, Course Notes 7 Jenny Huang, Lakshya Jain


