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In CS61B, you learned about many different sorting algorithms. Why are we learning yet another
new one in this class? All of the traditional sorting algorithms (i.e. quick sort, insertion sort, etc.)
rely on us being able to store all of the data in memory. This is a luxury we do not have when
developing a database. In fact, most of the time our data will be an order of magnitude larger than
the memory available to us.

1 I/O Review
Remember that an I/O is any time we either write a page from memory to disk or read a page from
disk into memory. Because of how time consuming it is to go to disk, we only look at the number
of I/Os an algorithm incurs when analyzing its performance. We pretty much ignore traditional
measures of algorithmic complexity like big-O. Therefore, when developing our sorting algorithm
we will attempt to minimize the number of I/Os it will incur. One last thing to note when counting
IOs is that we ignore any potential caching done by the buffer manager. This implies that once we
unpin the page and say that we are done using it, the next time we attempt to access the page it
will always cost 1 IO.

2 Two Way External Merge Sort
Let’s start by developing a sorting algorithm that works but is not as good as possible. Because
we cannot keep all of our data in memory at one time, we know that we are going to sort different
pieces of it separately and then merge it together.

In order to merge two lists together efficiently, they must be sorted first. This is a hint that the
first step of our sorting algorithm should be to sort the records on each individual page. We’ll call
this first phase the “conquer” phase because we are conquering individual pages.

After this, let’s start merging the pages together using the merge algorithm from merge sort. We’ll
call the result of these merges sorted runs. A sorted run is any sequence of pages that is sorted.

The rest of the algorithm will simply be to continue merging these sorted runs until we have only
one sorted run remaining. One sorted run implies that our data is fully sorted! See the image on
the next page for a diagram of the algorithm run to completion.
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3 Analysis of Two Way Merge
When analyzing a database algorithm, the most important metric is the number of I/Os the al-
gorithm takes, so let’s start there. First, notice that each pass over the data will take 2 ∗N I/Os
where N is the number of data pages. This is because for each pass, we need to read in every page,
and write back every page after modifying it.

The only thing left to do is to figure out how many passes we need to sort the table. We always
need to do that initial “conquer” pass, so we always have at least one. Now, how many merging
passes are required? Each pass, we cut the amount of sorted runs we have left in half. Dividing
the data each time should scream out log to you, and because we’re diving it by 2, the base of our
log will be 2. Therefore we need dlog2(N)e merging passes, and 1 + dlog2(N)e passes in total. This
leads to our final formula of 2N ∗ (1 + dlog2(N)e) I/Os.

Now let’s analyze how many buffer pages we need to execute this algorithm. Remember that a
buffer page, or buffer frame, is a slot for a page to be stored in memory.

The first pass, the “conquering pass”, sorts each page individually. This means we only ever need
1 buffer page for this pass, to hold the page that we are sorting!

Now let’s analyze the merging passes. Recall how merging works in merge sort. We only compare
the first value for the two lists that we are merging. This means that we only need to store the
first page of each sorted run in memory, rather than the entire sorted runs. When we have used all
of the records from the original page, we simply get rid of that page from memory and load in the
next page of the sorted run. So far, we need 2 buffer pages (1 for each sorted run). We will call
the buffer frame used to store the front of each sorted run the input buffer. The only thing we’re
missing now is a place to store our output. We need to write out records somewhere, so we need 1
more page, called the output buffer. Once this page has filled up, we flush it to disk and start
constructing the next page. In total, we have two input buffers and 1 output buffer for a total of
3 pages required. This does not take advantage of all the memory that we have. Let’s construct a
better algorithm that uses all of our memory.

4 Full External Sort
Let’s assume we have B buffer pages available to us. The first optimization we will make is in the
initial “conquer pass.” Rather than just sorting individual pages, let’s load B pages and sort them
all at once. This way we will produce fewer and longer sorted runs after the first pass.

The second optimization is to merge more than 2 sorted runs together at a time. We have B buffer
frames available to us, but we need 1 for the output buffer. This means that we can have B-1 input
buffers and can thus merge together B-1 sorted runs at a time. See the next page for a diagram of
this sort assuming we have 4 buffer frames available to us.
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Now we take in 4 pages at a time during the conquering phase and output a sorted run of length
4. In the merging pass, we can merge all three sorted runs produced during the conquering pass at
once. This cut the number of passes (and thus our I/Os) in half!
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5 Analysis of Full External Merge Sort
Let’s now figure out how many I/Os our improved sort takes using the same process we did for
Two-Way Merge. The conquering pass produces only dN/Be sorted runs now, so we have fewer
runs to merge. During merging, we are dividing the number of sorted runs by B−1 instead of 2, so
the base of our log needs to change to B − 1. This makes our overall sort take 1 + dlogB−1dN/Bee
passes, and thus 2N ∗ (1 + dlogB−1dN/Bee) I/Os.

6 Practice Questions
1) You are trying to sort the Students table which has 1960 pages with 8 available buffer pages.
a. How many sorted runs will be produced after each pass?
b. How many pages will be in each sorted run for each pass?
c. How many IOs does the entire sorting operation take?

2) What is the minimum number of buffer pages that we need to sort 1000 data pages in two
passes?

7 Solutions
1) The first pass loads all 8 buffer pages with data pages at a time and outputs sorted runs until
each page is part of a sorted run. This means that we will have 1960 / 8 = 245 sorted runs of 8
pages after pass 0.

All subsequent passes merge 7 sorted runs at a time (remember we need a frame for the out-
put buffer) so after the first sorting pass we will have 245 / 7 = 35 sorted runs of 8 * 7 = 56 pages.

The next merging pass produces 35 / 7 = 5 sorted runs of 56 * 7 = 392 pages.

The next merging pass can merge all remaining sorted runs (because there are ≤ 7 sorted runs) so
it will produce 1 sorted run of all 1960 pages.

Therefore the answer to a is: 245, 35, 5, 1 and the answer to b is: 8, 56, 392, 1960.

Each pass takes 2 * N IOs where N is the total number of data pages because each page gets
read and written in a pass. This means that the answer to c is: 4 * 2 * 1960 = 15,680 IOs.
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2) The conquer pass of sorting divides the number of sorted runs that we have by B (initially we
consider each page to be its own sorted run even if it isn’t actually sorted yet). The merging pass
divides the number of sorted runs by B-1. Together, two passes will divide the number of sorted
runs we have by B(B-1). After those two passes we need to have only one sorted run remaining, so
we need:

1000

B(B − 1)
≤ 1

You can move the denominator to the other side and then move 1000 over as well to get:

B2 −B − 1000 ≥ 0

Using the quadratic formula, you can get that B = 32.1 which means we need 33 buffer pages.

CS W186, Spring 2020, Course Notes 6 Brian DeLeonardis


