CS W186 - Spring 2020
Guerrilla Section 3
Joins and Query Optimization

Sunday, March 15, 2020

Joins

We will be joining two tables: a table of students, and a table of assignment submissions; and we will be
joining by the student ID:

CREATE TABLE Students (
student_id INTEGER PRIMARY KEY,

)

CREATE TABLE AssignmentSubmissions(
assignment_number INTEGER,
student_id INTEGER REFERENCES Students(student_id),

)

SELECT *
FROM Students, AssignmentSubmissions
WHERE Students.student_id = AssignmentSubmissions.student_id;

We also have:
e Students has [S] = 20 pages, with ps = 200 records per page
e AssignmentSubmissions has [A] = 40 pages, with p4 = 250 records per page

Questions:

1. What is the I/O cost of a simple nested loop join for Students X AssignmentSubmissions?

2. What is the I/O cost of a simple nested loop join for AssignmentSubmissions X Students?

3. What is the I/O cost of a block nested loop join for Students X AssignmentSubmissions?

Assume our buffer size is B = 12 pages.

4. What about block nested loop join for AssignmentSubmissions X Students?

Assume our buffer size is B = 12 pages.

5. What is the I/O cost of an Index-Nested Loop Join for Students X AssignmentSubmissions?

Assume we have a clustered alternative 2 index on AssignmentSubmissions.student_id, in the form
of a height 2 B+ tree. Assume that index node and leaf pages are not cached; all hits are on the same
leaf page; and all hits are also on the same data page.

6. Now assume we have a unclustered alternative 2 index on AssignmentSubmissions.student_id, in
the form of a height 2 B+ tree. Assume that index node pages and leaf pages are never cached, and
we only need to read the relevant leaf page once for each record of Students, and all hits are on the
same leaf page.

What is the I/O cost of an Index-Nested Loop Join for Students x AssignmentSubmissions?

HINT: The foreign key in AssignmentSubmissions may play a role in how many accesses we do per
record.

7. What is the cost of an unoptimized sort-merge join for Students X AssignmentSubmissions?

Assume we have B = 12 buffer pages.

8. What is the cost of an optimized sort-merge join for Students x AssignmentSubmissions?

Assume we have B = 12 buffer pages.

9. In the previous question, we had a buffer of B = 12 pages. If we shrank B enough, the answer we got
might change.

How small can the buffer B be without changing the I/O cost answer we got?

10. What is the I/O cost of Grace Hash Join on these tables?

Assume we have a buffer of B = 6 pages.

Query Optimization 1
(Modified from Fall 2017)

For the following question, assume the following:

e Column values are uniformly distributed and independent from one another

e Use System R defaults (1/10) when selectivity estimation is not possible

e Primary key IDs are sequential, starting from 1
e Our optimizer does not consider interesting orders

We have the following schema:

cid INTEGER PRIMARY KEY,
open_roles INTEGER)
)

Table Schema Records Pages Indices
CREATE TABLE Student (25,000 500 « Index 1: Clustered(major). There
sid INTEGER PRIMARY KEY, are 130
name VARCHAR(32), unique majors
major VARCHAR(64)), « Index 2: Unclustered(semesters
semesters_completed completed).
INTEGER There are 11 unique values in the
) range
[0, 10]
CREATE TABLE Application (100,000 10,000 |« Index 3: Clustered(cid, sid).
sid INTEGER REFERENCES « Given: status has 10 unique
Student, values
cid INTEGER REFERENCES
Company,
status TEXT,
(sid, cid) PRIMARY KEY
)
CREATE TABLE Company (500 100 « Index 4: Unclustered(cid)

« Index 5: Clustered(open roles).
There are

500 unique values in the range [1,
500]

Consider the following query:

SELECT Student.name, Company.open_roles, Application.referral

FROM Student, Application, Company
WHERE Student.sid = Application.sid

AND Application.cid = Company.cid

AND Student.semesters_completed > 6
AND (Student.major=’EECS’ OR Company.open_roles <= 50)
= ’limbo’
ORDER BY Company.open_roles;

AND NOT Application.status

1. For the following questions, calculate the selectivity of each of the labeled Selectivities above.

(a) Selectivity 1

(b) Selectivity 2

(c) Selectivity 3

—-- (Selectivity 1)
-- (Selectivity 2)
-- (Selectivity 3)
-- (Selectivity 4)
-- (Selectivity 5)

(d) Selectivity 4

(e) Selectivity 5

2. For each predicate, which is the first pass of Selinger’s algorithm that uses its selectivity to estimate
output size? (Pass 1, 2 or 37)
(a) Selectivity 1
(b) Selectivity 2
(c) Selectivity 3
(d)
)

(e) Selectivity 5

Selectivity 4

3. Mark the choices for all access plans that would be considered in pass 2 of the Selinger algorithm.

(a) Student 1 Application (800 I0s)
(b) Application >t Student (750 10s)
(¢) Student <t Company (470 I0s)
(d) Company <t Student (525 10s)
(e) Application >1 Company (600 10s)
(f)

f) Company 1 Application (575 10s)

4. Which choices from the previous question for all access plans would be chosen at the end of pass 2 of
the Selinger algorithm?

5. Which plans that would be considered in pass 37

(a) Company > (Application 1 Student) (175,000 IO0s)
(b) Company <1 (Student >t Application) (150,000 10s)
(¢) Application > (Company 1 Student) (155,000 10s)

160,000 10s)
215,000 1Os)

)
e) Student <t (Company b1 Application)
t (180,000 I0s)

(
(
(Company i Application) >t Student (
(Application >t Company) <1 Student (200,000 10s)
(Application > Student) >1 Company (194,000 10s)
(Student 1 Application) <1 Company (195,000 10s)
(Student 1 Company) <1 Application (165,000 10s)

6. Which choice from the previous question for all plans would be chosen at the end of pass 37

Query Optimization 2

(Modified from Spring 2016)

1. True or False
e When evaluating potential query plans, the set of left deep join plans are always guaranteed to
contain the best plan.
e As a heuristic, the System R optimizer avoids cross-products if possible.
e A plan can result in an interesting order if it involves a sort-merge join.

e The System R algorithm is greedy because for each pass, it only keeps the lowest cost plan for
each combination of tables.

2. For the following parts assume the following:

e The System R assumptions about uniformity and independence from lecture hold
e Primary key IDs are sequential, starting from 1

We have the following schema:

CREATE TABLE Flight (

fid INTEGER PRIMARY KEY,

from_id INTEGER REFERENCES City,
to_id INTEGER REFERENCES City,

NTuples: 100K, NPages: 50

Index:

(1) unclustered B+-tree on aid. 20 leaf pages.
(I1) clustered B+-tree on (from_cid, fid). 10 leaf

aid INTEGER REFERENCES Airline) pages.

CREATE TABLE City (

cid INTEGER PRIMARY KEY,
name VARCHAR(16),

state VARCHAR(16),
population INTEGER)

NTuples: 50K, NPages: 20

Index:

() clustered B+-tree on population. 10 leaf
pages. (IV) unclustered index on cid. 5 leaf
pages. Statistics:

state in [1, 50], population in [10°, 8*10°]

CREATE TABLE Airline (

aid INTEGER PRIMARY KEY,

hq_cid INTEGER REFERENCES City,
name VARCHAR (16))

NTuples: 5K, NPages: 2

Consider the following query:

SELECT *

FROM Flight F, City C, Airline A
WHERE F.to_cid = C.cid

AND F.aid = A.aid

AND F.aid >= 2500

AND C.population > 5e6

AND C.state = ’California’;

Considering each predicate in the WHERE clause separately, what is the selectivity for each?

(a) R1: C.state=’California’

(b) R2: F.to_id = C.cid

(c) R3: F.aid >= 2500

(d) R4: C.population > 5 * 1076

3. For each blank in the System R DP table for Pass 1. Assume this is before the optimizer discards any
rows it isn’t interested in keeping and note that some blanks may be N/A. Additionally, assume B+
trees are height 2.

Table(s) Plans Interesting Orders Cost (I/0s)
from Plan (N/A if

none)
Flight Index (1)
City Filescan
City Index (l11)

4. After Pass 2, which of the following plans could be in the DP table?
(a) City [Index(III)] JOIN Airline [File scan]
(b) City [Index (IIT)] JOIN Flight [Index (I)]
(c) Flight [Index (II)] JOIN City [Index (III)]

5. Suppose we want to optimize for queries similar to the query above in part 2, which of the following
suggestions could reduce I/O cost?

(a) Change Index (III) to be unclustered
(b) Store City as a sorted file on population

