
CS W186 Introduction to Database Systems
Spring 2020 Josh Hug, Michael Ball DIS 9

1 Conflict Serializability

(a) Draw the dependency graph (precedence graph) for the schedule.

(b) Is this schedule conflict serializable? If so, what are all the conflict equivalent serial schedules?
If not, why not?

(c) Draw the dependency graph (precedence graph) for the schedule.

(d) Is this schedule conflict serializable? If so, what are all the conflict equivalent serial schedules?
If not, why not?

2 Deadlock

(a) Draw a "waits-for" graph and state whether or not there is a deadlock

CS W186, Spring 2020, DIS 9 1



3 Locking

(a) What is printed, assuming we initially have B = 3 and F = 300?

(b) Does the execution use 2PL or strict 2PL?

(c) Would moving Unlock(F) in the second transaction to any point after Lock_S(B) change this
(or keep it) in 2PL?

(d) Would moving Unlock(F) in the first transaction and Unlock(F) in the second transaction to
the end of their respective transactions change this (or keep it) in strict 2PL?

(e) Would moving Unlock(B) in the first transaction and Unlock(F) in the second transaction to
the end of their respective transactions change this (or keep it) in strict 2PL?

CS W186, Spring 2020, DIS 9 2



4 Multigranularity Locking
(a) Suppose a transaction T1 wants to scan a table R and update a few of its tuples. What kinds of

locks should T1 have on R, the pages of R, and the updated tuples?

(b) Is an S lock compatible with an IX lock?

(c) Consider a table which contains two pages with three tuples each, with Page 1 containing
Tuples 1, 2, and 3, and Page 2 containing Tuples 4, 5, and 6.

(a) Given that a transaction T1 has an IX lock on the table, an IX lock on Page 1, and an X
lock on Tuple 1, which locks could be granted to a second transaction T2 for Tuple 2?

(b) Given that a transaction T1 has an IS lock on the table and an S lock on Page 1, what
locks could be granted to a second transaction T2 for Page 1?

5 Project Prep
The LockManager in the project will have the following 4 functions:

• acquire(transaction, resourceName, lockType): this method is the stan-
dard acquire method of a lock manager. It allows a transaction to request one lock, and
grants the request if there is no queue and the request is compatible with existing locks.
Otherwise, it should queue the request (at the back) and block the transaction

• release(transaction, resourceName): this method is the standard release method
of a lock manager. It allows a transaction to release one lock that it holds.

• acquireAndRelease(transaction, resourceName, lockType, releaseLocks):
this method atomically acquires one lock and releases zero or more locks. This method has
priority over any queued requests (it should proceed even if there is a queue, and it is placed
in the front of the queue if it cannot proceed).

• promote(transaction, resourceName, lockType): this method allows a trans-
action to explicitly promote/upgrade a held lock. This method has priority over any queued
requests (it should proceed even if there is a queue, and it is placed in the front of the queue
if it cannot proceed).

In this problem we will have 3 transactions (T1, T2, T3) and 2 resources that we will try to lock (A,
B). After each lock request is processed, fill out the following two tables that store the information
for what locks are held:

CS W186, Spring 2020, DIS 9 3



The following lock requests are made in this order:

• acquire(T1, A, X)

• acquire(T2, B, S)

• acquire(T3, B, X)

• acquireAndRelease(T2, A, S, releaseLocks=<B>)

• release(T1, A)

• acquire(T1, A, S)

• acquire(T3, A, X)

• promote(T2, A, X)

• release(T1, A)

CS W186, Spring 2020, DIS 9 4


