
CS W186
Fall 2019 Transactions
1 Introduction

In reality, we usually don’t have just one person accessing a database of information. Many users
can make requests to a database at a time which can cause concurrency issues. What happens
when one user writes and then another user reads from the same resource? What if both users try
to write to the same resource? Here are some problems we can run into when several users are
using the database at the same time:

• Inconsistent Reads: A user reads only part of what was updated.

– User 1 updates Table 1 and then updates Table 2.

– User 2 reads Table 2 (which User 1 has not updated yet) and then Table 1 (which User
1 already updated).

• Lost Update: Two users try to update the same record so one of the updates gets lost. For
example:

– User 1 updates a toy’s price to be price * 2.

– User 2 updates a toy’s price to be price + 5, blowing away User 1’s update.

• Dirty Reads: One user reads an update that was never committed.

– User 1 updates a toy’s price but this gets aborted.

– User 2 reads this update even though it was aborted.

CS W186, Fall 2019, Course Notes 1 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
2 Transactions

Our solution to the problem above is to try to make sure one user’s actions are all executed (or
aborted) before another user’s actions are executed. We will do this by using something called a
transaction, which is a sequence of multiple actions to be executed as an atomic unit.1 Here are
some properties of transactions we want so that we can avoid the problems from above:

• Atomicity: A transaction ends in two ways: it either commits or aborts. Atomicity means
that either all actions in the Xact happen, or none happen.

• Consistency: If the DB starts out consistent, it ends up consistent at the end of the Xact.

• Isolation: Execution of each Xact is isolated from that of others. In reality, the DBMS will
interleave actions of many Xacts and not execute each in order of one after the other. The
DBMS will ensure that each Xact executes as if it ran by itself.

• Durabilty: If a Xact commits, its effects persist. The effects of a committed Xact must survive
failures.

3 Concurrency Control

We’ll begin by discussing the Isolation property of transactions. How can we ensure that even if
we interleave actions of different transactions that each Xact executes as if it ran by itself? We will
take a look at different transaction schedules, which is a sequence of actions on data from one or
more transactions. These actions include: Begin, Read, Write, Commit and Abort.

The easiest way to ensure that each Xact executes as if it ran by itself is to run all the opera-
tions of one Xact to completion before running the next one. This is called a serial schedule. For
example, the following schedule is a serial schedule because T1’s operations run completely before
T2 runs.

1We sometimes shorten transaction to Xact.

CS W186, Fall 2019, Course Notes 2 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions

It’s not the most efficient to wait for an entire transaction to finish before starting another one. So
how do we make a schedule that interleaves actions from different transactions, but gives the same
results as a serial schedule? Basically, we are trying to look for an equivalent schedule – one that
involves the same Xacts where each individual transactions actions are ordered the same and leaves
the DB in the same final state. If we find a reordered schedule whose results are equivalent to a
serial schedule, we call the reordered schedule serializable. For example, the following schedule
is serializable because it is equivalent to the schedule above. You can work through the following
schedule and see that resources A and B end up with the same value as the serial schedule above.

CS W186, Fall 2019, Course Notes 3 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
Now the question is: how do we ensure that two schedules leave the DB in the same final state
without running through the entire schedule to see what the result is? We can do this by looking
for conflicting operations, which are operations that are from different transactions on the same
object and at least one of them is a write. Then we check if the two schedules have every pair of
conflicting operations ordered in the same way to conclude whether or not the DB ends up in the
same final state - if so, these schedules are said to be conflict equivalent.

Now that we have a way of ensuring that two schedules leave the DB in the same final state,
we can check if a schedule is conflict equivalent to a serial schedule without running through the
entire schedule. We call a schedule that is conflict equivalent to some serial schedule conflict
serializable. Note: if a schedule S is conflict serializable then it implies that is serializable.2.

3.1 Conflict Dependency Graph

Now that we have a way of checking if a schedule is serializable! We can check if the schedule is
conflict equivalent to some serial schedule because conflict serializable implies serializable. We can
check conflict serializability by building the following graph:

• One node per Xact

• Edge from Ti to Tj if:

– an operation Oi of Ti conflicts with an operation Oj of Tj

– Oi appears earlier in the schedule than Oj

A schedule is conflict serializable if and only if its dependency graph is acyclic. So all we have to do
is check if the graph is acyclic to check if it’s conflict serializable which in turn makes it serializable!

2Not all serializable schedules are conflict serializable

CS W186, Fall 2019, Course Notes 4 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
Let’s take a look at two examples:

• The following schedule is conflict serializable and the conflict graph is acyclic. There are two
conflicting operations:

– T1 reads A and then T2 writes to A. Because of this, there will be an edge from T1 to
T2.

– T1 writes to A and then T2 reads from A. Since there already is an edge from T1 to
T2, we don’t have to add the edge again.

• The following schedule is not conflict serializable and the conflict graph is not acyclic. Some
conflicting operations:

– T1 reads A and then T2 writes to A. Because of this, there will be an edge from T1 to
T2.

– T2 writes to B and then T1 reads B. Because of this, there will be an edge from T2 to
T1.

CS W186, Fall 2019, Course Notes 5 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
4 Two Phase Locking

What are locks, and why are they useful? Locks are basically what allows a transaction to read
and write data. For example, if Transaction T1 is reading data from resource A, then it needs to
make sure no other transaction is modifying resource A at the same time. So a transaction that
wants to read data will ask for a Shared (S) lock on the appropriate resource, and a transaction
that wants to write data will ask for an Exclusive (X) lock on the appropriate resource. Only one
transaction may hold an exclusive lock on a resource, but many transactions can hold a shared lock
on data.

• Xact must obtain a S (shared) lock before reading, and an X (exclusive) lock before writing.

• Xact cannot get new locks after releasing any locks – this is the key to enforcing serializability
through locking!

The problem with this is that it does not prevent cascading aborts. For example,

• T1 updates resource A and then releases the lock on A.

• T2 reads from A.

• T1 aborts.

• In this case, T2 must also abort because it read an uncommitted value of A.

To solve this, we will do Strict Two Phase Locking: same as 2PL, except all locks get released
together when the transaction completes.

CS W186, Fall 2019, Course Notes 6 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
5 Lock Management
Now we know what locks are used for and the types of locks. We will take a look at how the Lock
Manager3 manages these lock and unlock requests and how it decides when to grant the lock.

First of all, LM maintains a hash table, keyed on names of the resources being locked. LM keeps
an entry for each currently held lock. Each of these entries contains a granted set (set of Xacts
that currently have access to the lock), lock mode (type of lock held), and wait queue (queue of
lock request). See the following graphic:

When a lock request arrives, the Lock Manager checks if any Xact in the Granted Set or in the
Wait Queue want a conflicting lock. If so, the requester gets put into the Wait Queue. If not, then
the requester is granted the lock and put into the Granted Set.

In addition, Xacts can request a lock upgrade: this is when a Xact with shared lock can request to
upgrade to exclusive. The Lock Manager will add this upgrade request at the front of the queue.

3We will refer to the Lock Manager as LM sometimes.

CS W186, Fall 2019, Course Notes 7 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
Here is some pseudocode for how to process the queue; note that it doesn’t explicitly go over what
to do in cases of promotion etc, but it’s a good overview nevertheless.

If queue skipping is not allowed, here is how to process the queue

H = set of held locks on A

Q = queue of lock requests for A

def request(lock_request):

if Q is empty and lock_request is compatible with all locks in H:

grant(lock_request)

else:

addToQueue(lock_request)

def release_procedure(lock_to_release):

release(lock_to_release)

for lock_request in Q: # iterate through the lock requests in order

if lock_request is compatible with all locks in H:

grant(lock_request) # grant the lock, updating the held set

else:

return

Note that this implementation does not allow queue skipping. When a request arrives under a
queue skipping implementation, we first check if you can grant the lock based on what locks are held
on the resource; if the lock cannot be granted, then put it at the back of the queue. When a lock is
released and the queue is processed, grant any locks that are compatible with what is currently held.

An example of this is the following: Suppose, on resource A, that T1 holds IS and T2 holds an
IX lock. The queue has, in order, the following requests: T3 : X(A), T4 : S(A), T5 : S(A), and
T6 : SIX(A).

Now, let T2 release its lock. Instead of processing the queue in order and stopping when a conflict-
ing lock is requested (which would result in no locks being granted, as T3 is at the front and wants
X(A)), queue skipping processes the queue in order, granting locks one by one whenever compatible.

Here, it would look at T3’s X(A) request, determine that X(A) is incompatible with the IS(A) lock
T1 holds, and move to the next element in the queue. It would then grant T4’s S(A) request, as it
is compatible with the held locks of A, and add T4 : S(A) to the set of locks held on A. It would
then look at T5 : S(A), determine that it is compatible with T4 : S(A) and T1 : IS(A), and grant
it. Finally, it would look at T6 : SIX(A), see that it is incompatible with T4 : S(A) and T5 : S(A)
in the held set, and not grant it as a result.

CS W186, Fall 2019, Course Notes 8 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
Once again, here is some pseudocode for processing the queue, but this time with queue skipping:

If queue skipping is allowed, here is how to process the queue

H = set of held locks on A

Q = queue of lock requests for A

def request(lock_request):

if lock_request is compatible with all locks in H:

grant(lock_request)

else:

addToQueue(lock_request)

def release_procedure(lock_to_release):

release(lock_to_release)

for lock_request in Q: # iterate through the lock requests in order

if lock_request is compatible with all locks in H:

grant(lock_request) # grant the lock, updating the held set

CS W186, Fall 2019, Course Notes 9 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
6 Deadlock

We now have a lock manager that will put requesters into the Wait Queue if there are conflicting
locks. But what happens if T1 and T2 both hold S locks on a resource and they both try upgrade
to X? T1 will wait for T2 to release the S lock so that it can get an X lock while T2 will wait for
T1 to release the S it can get an X lock. At this point, neither transaction will be able to get the
X lock because they’re waiting on each other! This is called a deadlock, a cycle of Xacts waiting
for locks to be released by each other.

6.1 Avoidance

One way we can get around deadlocks is by trying to avoid getting into a deadlock. We will assign
the Xact’s priority by its age: now - start time. If Ti wants a lock that Tj holds, we have two
options:4

• Wait-Die: If Ti has higher priority, Ti waits for Tj; else Ti aborts

• Wound-Wait: If Ti has higher priority, Tj aborts; else Ti waits

4Important Detail: If a transaction re-starts, make sure it gets its original timestamp.

CS W186, Fall 2019, Course Notes 10 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
6.2 Detection

Although we avoid deadlocks in the method above, we end up aborting many transactions! We can
instead try detecting deadlocks and then if we find a deadlock, we abort one of the transactions in
the deadlock so the other transactions can continue.

We will detect deadlocks by creating and maintaining a “waits-for” graph. This graph will
have one node per Xact and an edge from Ti to Tj if:

• Tj holds a lock on resource X

• Ti tries to acquire a lock on resource X, but Tj must release its lock on resource X before Ti
can acquire its desired lock.

For example, the following graph has a edge from T1 to T2 because after T2 acquires a lock on B,
T1 tries to acquire a conflicting lock on it. Thus, T1 waits for T2.

We will periodically check for cycles in a graph which indicates a deadlock. If a cycle is found - we
will ”shoot” a Xact in the cycle.

Important note: A ”waits-for” graph is used for cycle detection and is different from the con-
flict dependency graph we discussed earlier which was used to figure out if a transaction schedule
was serializable.

CS W186, Fall 2019, Course Notes 11 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
7 Lock Granularity

So now that we understand the concept of locking, we want to figure out what to actually lock.
Do we want to lock the tuple containing the data we wish to write? Or the page? Or the table?
Or maybe even the entire database, so that no transaction can write to this database while we’re
working on it? As you can guess, the decision we make will differ greatly based upon the situation
we find ourselves in.

Let us think of the database system as the tree below:

The top level is the database. The next level is the table, which is followed by the pages of the
table. Finally, the records of the table themselves are the lowest level in the tree.

Remember that when we place a lock on a node, we implicitly lock all of its children as well
(intuitively, think of it like this: if you place a lock on a page, then you’re implicitly placing a lock
on all the records and preventing anyone else from modifying it). So you can see how we’d like to
be able to specify to the database system exactly which level we’d really like to place the lock on.
That’s why multigranularity locking is important; it allows us to place locks at different levels of
the tree.

We will have the following new lock modes:

• IS: Intent to get S lock(s) at finer granularity.

• IX: Intent to get X lock(s) at finer granularity. Note: that two transactions can place an IX
lock on the same resource – they do not directly conflict at that point because they could
place the X lock on two different children! So we leave it up to the database manager to
ensure that they don’t place X locks on the same node later on while allowing two IX locks
on the same resource.

CS W186, Fall 2019, Course Notes 12 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
• SIX: Like S and IX at the same time. This is useful if we want to prevent any other transaction

from modifying a lower resource but want to allow them to read a lower level. Here, we say
that at this level, I claim a shared lock; now, no other transaction can claim an exclusive lock
on anything in this sub-tree (however, it can possibly claim a shared lock on something that
is not being modified by this transaction–i.e something we won’t place the X lock on. That’s
left for the database system to handle).

Interestingly, note that no other transaction can claim an S lock on the node that has a SIX lock,
because that would place a shared lock on the entire tree by two transactions, and that would
prevent us from modifying anything in this sub-tree. The only lock compatible with SIX is IS.

Here is the compatibility matrix below; interpret the axes as being transaction T1 and trans-
action T2. As an example, consider the entry X, S – this means that it is not possible for T1 to
hold an X lock on a resource while T2 holds an S lock on the same resource. NL stands for no lock.

7.1 Multiple Granularity Locking Protocol

1. Each Xact starts from the root of the hierarchy.

2. To get S or IS lock on a node, must hold IS or IX on parent node.

3. To get X or IX on a node, must hold IX or SIX on parent node.

4. Must release locks in bottom-up order.

5. 2-phase and lock compatibility matrix rules enforced as well

6. Protocol is correct in that it is equivalent to directly setting locks at leaf levels of the hierarchy.

CS W186, Fall 2019, Course Notes 13 Jenny Huang, Lakshya Jain

CS W186
Fall 2019 Transactions
Appendix
We now provide a formal proof for why the presence of a cycle in the waits-for graph is equivalent
to the presence of a deadlock.

We use αj(Ri) to represent the lock request of lock type αj on the resource Ri by transaction Tj .

We use βij(Ri) to represent a lock held of the lock type βij on the resource Ri by transaction Tj .

Definition 1. Deadlock

A deadlock is a sequence of transactions (with no repetitions) T1, . . . , Tk such that:

• for each i ∈ [1, k), Ti is requesting a lock αi(Ri), Ti+1 holds the lock βi,i+1(Ri), and αi and
βi,i+1 are incompatible, and

• Tk is requesting a lock αk(Rk), T1 holds the lock βk,1(Rk), and αk and βk,1 are incompatible.

Definition 2. Waits-for Graph

Let T = {T1, . . . , Tn} be the set of transactions and let Di ⊆ T be defined as follows:

• if Ti is blocked while requesting some lock αi(Ri), then Di is the set of transactions Tj that
hold locks βij(Ri) where αi and βij are incompatible,

• otherwise, Di = ∅.

The waits-for graph is the directed graph G = (V,E) with V = {1, . . . , n} and E = {(i, j) : Tj ∈
Di}.

Theorem. There is a simple cycle in the waits-for graph G ⇐⇒ there is a deadlock.

Proof. Assume there is a simple cycle C = {(i1, i2), . . . , (ik−1, ik), (ik, i1)} ⊆ E.

By definition of the waits-for graph, (i, j) ∈ E ⇐⇒ Tj ∈ Di, or alternatively, that Tj holds a lock
βij(Ri) while Ti is blocked requesting αi(Ri), and αi and βij are incompatible.

Therefore, (ij , ij+1) ∈ C ⊆ E ⇐⇒ Tij+1 holds a lock βijij+1(Rij) while Tij is blocked requesting
αij (Rij), where αij and βijij+1 are incompatible. A similar result holds for (ik, i1).

But this is simply the definition of a deadlock on the transactions Ti1 , . . . , Tik , so we have our
result.

CS W186, Fall 2019, Course Notes 14 Jenny Huang, Lakshya Jain

