CS W186 Databases - Fall 2019
Guerilla Section 3: Joins and Query Optimization

Sunday, October 20, 2019

Joins

We will be joining two tables: a table of students, and a table of assignment submissions; and we will be
joining by the student ID:

CREATE TABLE Students (
student_id INTEGER PRIMARY KEY,

)

CREATE TABLE AssignmentSubmissions(
assignment_number INTEGER,
student_id INTEGER REFERENCES Students(student_id),

)

SELECT *
FROM Students, AssignmentSubmissions
WHERE Students.student_id = AssignmentSubmissions.student_id;

We also have:
e Students has [S] = 20 pages, with pg = 200 records per page
e AssignmentSubmissions has [A] = 40 pages, with p4 = 250 records per page

Questions:

1. What is the I/O cost of a simple nested loop join for Students X AssignmentSubmissions?
Answer: 160,020 I/0Os.
The formula for a simple nested loop join is [S] + |S] - [4].
Plugging in the numbers gives us 20 + (20 - 200) - 40 = 160,020 I/Os.

2. What is the I/O cost of a simple nested loop join for AssignmentSubmissions X Students?
Answer: 200,040 I/Os.
The formula for a simple nested loop join is [A] + |A] - [S].
Plugging in the numbers gives us 40 + (40 - 250) - 20 = 200,040 I/Os.

3. What is the I/O cost of a block nested loop join for Students x AssignmentSubmissions?

Assume our buffer size is B = 12 pages.



Answer: 100 I/Os.

First, we can calculate our block size: B — 2 = 10.

Since Students is our left table, we calculate the number of blocks of Students:
[S]/B — 2 = 20/10 = 2.

Thus the final cost is [S] plus 2 passes through all of [A], or 20 + 2 - 40 = 100 I/Os.

. What about block nested loop join for AssignmentSubmissions X Students?
Assume our buffer size is B = 12 pages.

Answer: 120 I/Os.

As before, we can calculate our block size: B — 2 = 10.

Since AssignmentSubmissions is our left table, we calculate the number of blocks:
[A]/B — 2 =40/10 = 4.

Thus the final cost is [A] plus 4 passes through all of [S], or 40 4+ 4 - 20 = 120 I/Os.

. What is the I/O cost of an Index-Nested Loop Join for Students x AssignmentSubmissions?

Assume we have a clustered alternative 2 index on AssignmentSubmissions.student_id, in the form
of a height 2 B+ tree. Assume that index node and leaf pages are not cached; all hits are on the same
leaf page; and all hits are also on the same data page.

Answer: 16,020 I/Os.

The formula is [S] + |S|- (cost of index lookup).

The cost of index lookup is 3 I/Os to access the leaf, and 1 I/O to access the data page for all matching
records.

So the total cost is 20 + 4000 - 4 = 16,020 I/Os.

. Now assume we have a unclustered alternative 2 index on AssignmentSubmissions.student_id, in
the form of a height 2 B+ tree. Assume that index node and leaf pages are not cached; and all hits
are on the same leaf page.

What is the I/O cost of an Index-Nested Loop Join for Students x AssignmentSubmissions?

Answer: 22,020 I/Os.

The formula is [S] + |S] - (cost of index lookup).

This time though, the cost of index lookup is 3 I/Os to access the leaf, and 1 I/O to access the data
page for each matching record.

How many records match per key? We actually haven’t told you! But, we do know that we will
eventually have to access each record exactly once (since each AssignmentSubmission is foreign-keyed
on a student_id) - so there will be |A| = 10,000 data page lookups, one for each row.

So the total cost is 20 4+ 4000 - 3 + 10000 = 22,020 I/Os.

. What is the cost of an unoptimized sort-merge join for Students x AssignmentSubmissions?
Assume we have B = 12 buffer pages.

Answer: 300 I/Os.

The formula is (cost of sorting S) + (cost of sorting A) + [S] + [A].

For sorting S: The first pass will make two runs, which is mergeable in one merge pass; thus, we need
two passes.

For sorting A: The first pass will make four runs, which is mergeable in one merge pass; thus, we need

two passes.
Thufthe total cost is (2 - 2[S]) + (2 - 2[A]) + [S] + [A] = 5([S] + [A]) = 5- 60 = 300 I/Os.

. What is the cost of an optimized sort-merge join for Students x AssignmentSubmissions?

Assume we have B = 12 buffer pages.

Answer: 180 I/Os.
The difference from the above question is that we will skip the last write in the external sorting phase,



and the initial read in the sort-merge phase.

For this to be possible, all the runs of S and A in the last phase of external sorting should be able to
fit into memory together. From the previous question, we know there are 2 + 4 = 6 runs, which fits
just fine in our buffer of 12 pages.

Thus the total cost is 300 — 2[S] — 2[A] = 300 — 120 = 180 I/Os.

9. In the previous question, we had a buffer of B = 12 pages. If we shrank B enough, the answer we got
might change.

How small can the buffer B be without changing the I/O cost answer we got?

Answer: 9 buffer pages.

The restriction for optimized sort-merge join is that the number of final runs of S and A can both fit
in memory simultaneously. (i.e., the number of runs of S + the number of runs of A < B - 1). We had
2 4 4 runs last time, which fit comfortably in 12 — 1 buffer pages (recall that one page is reserved for
output).

What about B = 117 We would still have 2 +4 < 11 — 1 runs.

What about B = 107 We would still have 2 +4 < 10 — 1 runs.

What about B = 9?7 Now we have 3 runs for S and 5 runs for A, which just exactly fits in 9 — 1 buffer
pages.

Since 9 buffer pages fits perfectly, any smaller would force more merge passes and thus more I/Os.

10. What is the I/O cost of Grace Hash Join on these tables?
Assume we have a buffer of B = 6 pages.

Answer: 180 I/Os

For Grace Hash Join, we have to walk through what the partition sizes are like for each phase, one
phase at a time.

In the partitioning phase, we will proceed as in external hashing. We will load in 1 page a time and
hash it into B — 1 = 5 partitions.

This means the 20 pages of S get split into 4 pages per partition, and the 40 pages of A get split into
8 pages per partition.

Do we need to recursively partition? No! Remember that the stopping condition is that any table’s
partition fits in B — 2 = 4 buffer pages; the partitions of S satisfy this.

In the hash joining phase, the I/O cost is simply the total number of pages across all partitions - we
read all of these in exactly once.

Thus the final I/O cost is 20 + 20 for partitioning S, 40 + 40 for partitioning A, and 20 + 40 for the
hash join, for a total cost of 180 I/Os.

Query Optimization 1
(Modified from Fall 2017)

For the following question, assume the following:

e Column values are uniformly distributed and independent from one another
e Use System R defaults (1/10) when selectivity estimation is not possible

e Primary key IDs are sequential, starting from 1

e Our optimizer does not consider interesting orders

We have the following schema:



Table Schema Records Pages Indices

CREATE TABLE Student ( 25,000 500 * Index 1: Clustered(major). There
sid INTEGER PRIMARY KEY, are 130
name VARCHAR(32), unique majors
major VARCHAR(64)), * Index 2: Unclustered(semesters
semesters_completed completed).
INTEGER There are 11 unique values in the
) range

[0, 10]

)

CREATE TABLE Application ( 100,000 10,000 | - Index 3: Clustered(cid, sid).

sid INTEGER REFERENCES « Given: status has 10 unique
Student, values

cid INTEGER REFERENCES

Company,

status TEXT,

(sid, cid) PRIMARY KEY

)

CREATE TABLE Company ( 500 100 * Index 4: Unclustered(cid)
cid INTEGER PRIMARY KEY, « Index 5: Clustered(open roles).
open_roles INTEGER) There are

500 unique values in the range [1,
500]

Consider the following query:

SELECT Student.name, Company.open_roles, Application.referral
FROM Student, Application, Company

WHERE Student.sid = Application.sid -- (Selectivity 1)
AND Application.cid = Company.cid -- (Selectivity 2)
AND Student.semesters_completed > 6 -- (Selectivity 3)
AND (Student.major=’EECS’ OR Company.open_roles <= 50) -- (Selectivity 4)
AND NOT Application.status = ’limbo’ -— (Selectivity 5)

ORDER BY Company.open_roles;

1. For the following questions, calculate the selectivity of each of the labeled Selectivities above.

(a)

(b)

Selectivity 1
1/max(25000, 25000) = 1/25000. There are exactly 25000 values in Student.sid, and due to
the foreign key, there are at most 25000 values of Application.sid.

Selectivity 2
1/max (500, 500) = 1/500. Similarly to Selectivity 1, there are exactly 500 values in Com-
pany.cid, and due to the foreign key, there are at most 500 values in Application.cid.

Selectivity 3

(10-6) / (10- 0 + 1) = 4/11. We have 11 unique values, assumed to be equally distributed.
Therefore we use the equation for less than or equal to which is (high key - value) / (high key -
low key + 1).

Selectivity 4

(1/130 + 1/10) - (1/130 * 1/10) = 10/1300 + 130/1300 - 1/1300 = 139/1300. We
can find the selectivity that they are an EECS major by using the equation 1/distinct values.
Next, we find the selectivity that open positions are less than or equal to 50 using the equation
(v - low key) / ((high key - low key + 1) + (1 / number distinct)). Lastly we combine these two



selectivities using S(pl) + S(p2) - S(p1)S(p2) to determine the selectivity of having one or the
other.

(e) Selectivity 5
1-(1/10) = 9/10. Given 10 unique values, the non-negated predicate has selectivity 1/10, so
we can use the equation for NOT which is 1 - selectivity of the predicate.

2. For each predicate, which is the first pass of Selinger’s algorithm that uses its selectivity to estimate
output size? (Pass 1, 2 or 37)

(a) Selectivity 1

(b) Selectivity 2

()

(d)
)

(e) Selectivity 5

Selectivity 3
Selectivity 4

Solution: Pass 2, Pass 2, Pass 1, Pass 3, Pass 1. C and E are pass 1 because they only
involve filtering one table. A and B are pass 2 because they represent a join. Note that (d)—the OR
predicate—is over 2 tables that have no associated join predicate, so the selection is postponed along
with the cross-product, until after 3-way joins are done.

3. Mark the choices for all access plans that would be considered in pass 2 of the Selinger algorithm.

A, B, E, and F will be considered because they are not cross products.They are joined on a condition,
so some rows can be filtered out, making our intermediate relations smaller.

4. Which choices from the previous question for all access plans would be chosen at the end of pass 2 of
the Selinger algorithm?
B and F will be chosen because they have the lower cost for joining the two tables tables.

5. Which plans that would be considered in pass 37

(a) Company > (Application > Student) (175,000 10s)
(b) Company i (Student 1 Application) (150,000 IOs)
(¢) Application > (Company > Student) (155,000 I0s)
(d) Application > (Company < Student) (160,000 10s)
(e) Student <1 (Company 1 Application) (215,000 IOs)
(f) (Company <1 Application) > Student (180,000 IOs)
(¢) (Application <t Company) > Student (200,000 10s)
(h) (Application 1 Student) <1 Company (194,000 I10s)
(i) (Student i Application) >1 Company (195,000 10s)



(j) (Student 1 Company) 1 Application (165,000 10s)

Considers F and H only. A-E can be immediately discarded because they aren’t left-deep. G
won’t be considered because we chose (Company i Application) in pass 2. Similarly, choice I wouldn’t
be considered because we choose Application b Student in the previous pass. Choice J wouldn’t be
considered because there is no join on Student and Company.

6. Which choice from the previous question for all plans would be chosen at the end of pass 37
Chooses F. F has the lower I/O cost between F and H.

Query Optimization 2

(Modified from Spring 2016)

1. True or False
e When evaluating potential query plans, the set of left deep join plans are always guaranteed to
contain the best plan.
e As a heuristic, the System R optimizer avoids cross-products if possible.
e A plan can result in an interesting order if it involves a sort-merge join.
e The System R algorithm is greedy because for each pass, it only keeps the lowest cost plan for

each combination of tables.

False. This is a heuristic that System R uses to shrink the search space.

True.

True. Sort merge join leaves the joined tables in sort order, which may be useful in future passes
and/or if the overall query includes an ORDER BY clause.

False. It is not greedy because it keeps track of interesting orders. (Dynamic Programming!)

2. For the following parts assume the following:

e The System R assumptions about uniformity and independence from lecture hold
e Primary key IDs are sequential, starting from 1

We have the following schema:

CREATE TABLE Flight ( NTuples: 100K, NPages: 50
fid INTEGER PRIMARY KEY, Index:
from_id INTEGER REFERENCES City, |(I)unclustered B+-tree on aid. 20 leaf pages.
to_id INTEGER REFERENCES City, (I1) clustered B+-tree on (from_cid, fid). 10 leaf
aid INTEGER REFERENCES Airline) pages.
CREATE TABLE City ( NTuples: 50K, NPages: 20
cid INTEGER PRIMARY KEY, Index:
name VARCHAR (16), () clustered B+-tree on population. 10 leaf
state VARCHAR(16), pages. (IV) unclustered index on cid. 5 leaf
population INTEGER) pages. Statistics:

state in [1, 50], population in [10°, 8*10°]
CREATE TABLE Airline ( NTuples: 5K, NPages: 2
aid INTEGER PRIMARY KEY,
hg_cid INTEGER REFERENCES City,
name VARCHAR (16))

Consider the following query:



SELECT *

FROM Flight F, City C, Airline A
WHERE F.to_cid = C.cid

AND F.aid = A.aid

AND F.aid >= 2500

AND C.population > 5e6

AND C.state = ’California’;

Considering each predicate in the WHERE clause separately, what is the reduction factor for each?

(a) R1: C.state=’California’
1/50

(b) R2: F.to_cid = C.cid
1/50000

(c) R3: F.aid >= 2500
2501 /5000

(d) R4: C.population > 5 * 1076
3% 108
7%106+1

3. For each blank in the System R DP table for Pass 1. Assume this is before the optimizer discards
any rows it isn’t interested in keeping and note that some blanks may be N/A. Additionally, assume
it takes 2 I/Os to reach the leaf nodes.

Table(s) Plans Interesting Orders Cost (I/0s)
from Plan (N/A if
none)
Flight Index (1) aid 2 + 100020*R3
City Filescan N/A 20
City Index (Il N/A 2 + 30*R4

Detailed Solution: (Note there is a typo in the exam’s solutions. population is *not* an interesting
order for a the Index(III) scan.)

Flight:

Interesting order: aid is an interesting order because it’s used as part of a join condition in F.aid =
A.aid,potentially making the algorithm choose an index nested loop join in later passes.

Cost: 2 + (100,020) * R3. First we have the R3 selectivity factor due to the F.aid < 2500 clause and
that this index is on F.aid. We traverse down to the leaves with 2 I/Os. Then we only have to read
in part of the index that is relevant after applying the selectivity. The index size is 20 pages, but we
read in R3 * 20 pages. Since the index is unclustered, we perform 1 I/O per matching tuple. We have
100K total tuples but only need to consider 100K * R3. This gives us a total of 2 + (100,000 + 20) *
R3 I/Os for this index scan.

City 1st row:

Interesting order: None because file-scans don’t produce any interesting orders.

Cost: File-scans look through all of the pages, so it will take 20 I/Os.

City 2nd row:




Interesting order: None. population isn’t used in any later joins.

Cost: 2 + 30*R4. We have a selectivity factor of R4 since the index is on C.population. For clustered
indexes, we perform 1 I/O per matching page of tuples. Therefore in a similar calculation to Flight,
we read in R4*10pg portion of the relevant part of the index and R4*20pg worth of relevant pages of
matching tuples.

. After Pass 2, which of the following plans could be in the DP table?

(a) City [Index(III)] JOIN Airline [File scan]
(b) City [Index (IIT)] JOIN Flight [Index (I)]
(c) Flight [Index (II)] JOIN City [Index (III)]

Solution:

(a) Cannot. This is a cross product which the Selinger algorithm avoids

(b) Can. City [Index (IIT)] is kept from pass 1 because it has the lowest cost of the cities table. Flight
[Index (I)] is kept from pass 1 because it has an interesting order.

(¢) Cannot. Index (IT) would not have been kept as a Single Table Access Method. No interesting
order and more expensive than a simple full scan.

. Suppose we want to optimize for queries similar to the query above in part 2, which of the following
suggestions could reduce I/O cost?

(a) Change Index (III) to be unclustered
(b) Store City as a sorted file on population

Solution:

(a) Won’t reduce I/O cost. An unclustered index would not minimize I/O cost, since it’s more random
I/0, and we may load a page more than once. Instead of 1 I/O per matching page of tuples, this
would increase the cost to 1 I/O per matching tuple.

(b) May reduce I/O cost. Sorted file may provide more efficient range lookups due to the presence of
the C.population > 5e6 clause.



